AD-A096 187 TELEOYNE BROWN ENGINEERING HUNTSVILLE ALA SYSTEMS DIV F/6 9/2
SOFTWARE PARTITIONING SCHEMES FOR ADVANCED SIMULAT!ON COMPUTER ~=ETC(U)

FEB 81 S J CLYMER 3615—78-C-0013
UNCLASSIFIED AFHRL=TR=80-~42~PT=1

.i............

o
o 1A

—
.
——
Ty
r
f

N
(8

flis

MICROCOPY RESOLUTION TEST CHARI
NATIUNAL BURLAU OF STANDARDS 1963-A

FILE_Gopy

AN

ADAO9618%7

3

e L

~

)

NIMOITVCONMT Z2CxT

G s
‘ §0FTWARE JARTITIONING SCHEMES FOR ADVANCED VAR
- SIMULATION COMPUTER SYSTEMS . Part 7

{

" .

J—— - a————— .

fee e p— —

By

el

710 S, .I.E"l;m_g_g/

s'yslems vision
Teledyne Brown Engineering
300 Sparkman Drive
Huntsville, Alabama 35807

OPERATIONS TRAINING DIVISION
Williams Air Force Base, Arizona 85224

) E~»‘ Y
L Q- AR 20198

y)yg/é
AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TEXAS 78235

813 17232

U

vmi o i T —

NOTICE

When U.S. Government drawings, specifications. or other data are used for any purpose other
than a definitely related Government procurement operation, the Government thereby incurs
no responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings. specifications, or other data
is not to be regarded by implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture. use. or sell
any patented invention that may in any way be related thereto.

This final report was submitted by Systems Division, Teledyne Brown Engineering. 300
Sparkman Drive, Huntsville, Alabama 35807, under Contract F33615-78-C-0013. Project
6114, with the Operations Training Division. Air Force Human Resources Laboratory (AFSC).
Williams Air Force Base, Arizona 85224. Pat Price was the Contract Monitor for the
Laboratory.

This report has been reviewed by the Office of Public Affairs {(PA) and is releasable 1o the
National Technical Information Service (NTIS). At NTIS. it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

MARTY R. ROCKWAY, Technical Director
Operations Training Division

RONALD W. TERRY, Colonel. USAF
Commander

mpmar o N0

.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dale Entered)
READ INS ONS
REPORT DOCUMENTATION PAGE BEFORE C&;zg%’;}c FORM
[T REPORT NUMBER T GOVT ACCESSION WO 3 RECIPIENT'S CATALOG NUWBER]
AFHRL-TR-80-42 (Parnt 1)]
6. TITLE (and Subtitte)) S. TYPE OF REPORT & PERIOD COVERED
SOFTWARE PARTITIONING SCHEMES FOR ADVANCED Final

SIMULATION COMPUTER SYSTEMS

6. PERFORMING ORG. REPORT NUMBER

2 1+ o

7. AUTHOR(s) 5. CONTRACT OR GRANT NUMBER(s)
S.J. Clymer F33615-78-C-0013

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROCRAM ELEMENTY. PROJECT. T ASK
Systems Division. Teledyne Brown Engineering
300 Sparkman Drive 62205F
Huntsville. Alabama 35807 61142304

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
HQ Air Force Human Resources Laboratory (AFSC) February 1981
Brooks Air Force Base. Texas 78235 3. ';2;“" OF PAGES

4 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
Operations Training Division Unclassified
Air Force Human Resources Laboratory
Williams Air Force Base. Arizona 85224 1527 DECL ASSIFICATION/ DOWNGRABING

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unfimited.

17. OISTRIBUTION STATEMENT (of the sbatract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This report consists of two parts, Part I includes pages 1 through 152. Part If contains pages 153 through 460.

19. KEY WORDS {Continue on reverse side if necessary and identify by block number)
multiple processors

software partitioning

real-time computational design evaluation
flight simulation

(-

data base management
software design
computer systems

20. S&TRACT (Continue on reverse side It y end ty by dlock ber)

The overall objective of this study was to design software partitioning techniques that can be used by the Air
Force to partition a large flight simulator program for optimal execution on alternative configurations. The results
were s mathematical model which defines characteristics for an optimal partition and 2 manually demonstrated
partitioning algorithm design which implements heuristic controls based on the mathematical model statement.

0D 538" W73

Unclassified

SECUMITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bniered)

b N o

Lo e

PREFACE

This report was prepared by the Systems Division, Teledyne Brown
Engineering, Huntsville, Alabama. The work was done under Contract
F33615-78-C-0013 with the U.S. Air Force Human Resources Laboratory

(AFHRL).

Accession For

NTIS GRA&I

DTIC TAB

Unannounced]
Justification __

By -
Di%}q@bution/
Availability Codes

1Avail and/or
Dist Special

R Tt 1 ISP . (MR .24

g™

W

g ;
¥ .
' ;
t
:
TABLE OF CONTENTS
Page
1. INTRODUCTION . « o ¢ s « o o ¢ o ¢ o » ¢ o s o o o o o« o 7 5
1.1 Objectives . o o o o o o o o o ¢ o o o s o s o o o o 7 ?
1.2 Background ¢ e o 6 o o6 % 6 & & o & e o s o s o s ° @ 7 |
1.3 Approach . . ¢ ¢ ¢ 4 o o ¢ o ¢ o ¢ o o o s o o o o o 8
1.4 Results e o o o 6 o 6 6 o & e & &+ o ° & ° 2 e & s+ @ 9
2, SOFTWARE PARTITIONING . . . & + 4 &+ ¢ ¢ o o o o o o o o & 10
2.1 Partitioning Environment . . . « « « ¢ « ¢« ¢ o« ¢ o 10 f
2.2 Design Goals * e o o & 8 @ ® s & & & & e 6 o o s o ll‘ ‘}
2.3 Alternative Approaches . « « + ¢ ¢« ¢ ¢« ¢ ¢« ¢« o o « o 15 3
3. MODEL DEVELOPMENT . . ¢ ¢ ¢ o o ¢ ¢ o o o o o ¢ s o o o o 18
3.1 Mathematical Statement . « + « ¢ ¢ « « s ¢ ¢ o o o » 18 o
3.2 Algorithm.Design Highlights +. . « . « . 30 :
3.3 Feasibility Demonstratiof .« . « ¢« o« o ¢« ¢ o« o« o« o « 48
4. MODEL IMPLEMENTATION CONSIDERATIONS « « « « « & 55 '
4,1 Flight Training Simulator Evaluation Environment . . 55 F
4.2 Data Base Management . . « « « « s o o o o« s s o« » » 60 B
4.3 Target Computer and Source Language Selection . . . 71 3
4.4 Recommended Implementation Schedule 78
5. CONCLUDING REMARKS . . . ¢ & ¢ o ¢ o s ¢ o o o s o o o & 86

Sul Findings « « « + o o o o o s o o o s o s e s e .. 86 :
5‘2 Related work . L] 14 L] . . L] L] L] . . L L L] L] L] 86
5.3 Areas for Further Study . ¢« ¢« ¢+ ¢ ¢ ¢ « o« ¢« ¢ s « +» 87
APPENDIX A. USER INPUTS . . & « « o« o o s o s s o s s ¢ s o ¢« + B89
APPENDIX B. REPORT FORMATS . . & & « « « « s « » o « o « » o o 138
APPENDIX C. FEASIBILITY DEMONSTRATION ¢ &« « ¢ ¢« ¢« o« « o 153

APPENDIX D. DETAILED DESIGN . . . 4 « ¢ « ¢ o o« o o o o s o o o 365

H
i

3
H
H
I

Figure

10
11

12

13
14
15
16

17

LIST OF ILLUSTRATIONS

Title
The System Life Cycle « .
Major Partitioning Algorithm Steps . .

User Input Process Flow « « . .

P

Basic Partitioning Algorithm Control Flow

Priority Heuristic Selection Process .
Processor Load Balance Heuristic . . .
Memory Allocation Balance Heuristic . .
Reduce Development Cost Heuristic . . .
Augmented Partitioning Algorithm Flow .
Report Generator Design
Sample Problem Configuration

Sample Configuration Memory Processor
Communications & ¢ ¢« & & &

Application Flow « 4 « &+ & & &
Hierarchy of Flight Trainer Documents .
Computational Design Evaluation
Algorithm Implementation Tasks

Projected Time Relationship of Tasks .

Page
11
33
35
38
40
41
43
45
47
49
51
52
53
56
59
79

81

e

LIST OF TABLES

Table Title Page
1 Basic Goal Program Matrix Sizing « . + .+ . . 31]
2 Internal Partitioning Algorithm Control and Look-Up ‘

Tables Established by PASS 1 « ¢« ¢« &« « « 36

3 User Input Echo Reports that are Specified in
Appendix B . . 4 4 4 4t e s e e s s e e e e e e e 37

4 Development Documents and Their Relationship to
the Partitioning Algorithm for Software Systems . . . 58

5 Data Block Characterization . . « +« « + ¢ &« ¢« « &« « o 62
6 Memory Device Characterization 63
7 Task Characterization . « « « « o« « ¢« o o ¢« ¢« o « o « 66
8 Processor Characterization . . « . ¢« + ¢ &« o o s « +» 68
9 External File Sizing Requirements « . « . 73 J

10 Internal Algorithm Table Sizing Requirements 76

1. INTRODUCTION

This report documents the Software Partitioning Schemes for the
4 Advanced Simulation Computer Systems Study performed by Teledyne Brown
Engineering (TBE) under Contract No. F33615-78-C-0013 for the Air Force
Human Resources Laboratory (AFHRL). The report contains five sections.
Section 1 introduces the study objectives, background, approach, and re-
sults. Section 2 defines the software partitioning problem enviromment,
partitioning goals, and alternative approaches. Section 3 presents the
technical details of the resultant software partitioning algorithm
developed and manually demonstrated under this contract. Section 4
addresses implementation considerations and recommends a schedule of
tasks for algorithm automation verification and validation. Section 5

concludes with a brief recapitulation of the study findings, related 3
work, and areas of further study.

1.1 OBJECTIVES " |

The overall objective for this study was to design software
partitioning techniques that can be used by the Air Force to partition a
large flight simulator program for optimal execution on alternative mul-
] tiple processor configurations. In particular, the Air Force needs a
software partitioning algorithm for use in conceptualizing, manipulat-
ing, and evaluating candidate flight trainer computational designs.
Major design objectives pursued by TBE in deriving the software parti-
tioning algorithm included emphasis on potential automated steps, manual
feasibility demonstration, and recommended implementation steps for its
use by the Air Force.

1.2 BACKGROUND

It has been evident for some time that significant increases in
computer system performance may be realized by using two or more smaller
processors connected in parallel, as opposed to one large processor.
This concept has been utilized in many real-time flight simulators where
each of several computers performs a specific task. Future trends are
toward further expansion of this concept to include not only tasks that
may be executed in parallel but also tasks that must execute serially
because of temporal relationships. This causes many multiple processor
configurations to be applicable to flight training simulators and com-
plicates the problem of allocating the software among the processors.

Typically, the design of a computer system is an iterative pro-
cedure. Certain portions of the hardware and software can be designed
independently, but the remaining portions must be designed interac-
tively., With the rising cost of software, it has become more and more
important to know the effect of computer hardware design on the design of

2 T PHECEDING PAGE BLAMK-3OT ¥1LIGD
i. |

the software as well as the effect of the software design on the selec-
tion and interconnection of the hardware to develop the optimum design
for the computer system.

This study has pursued the development of an algorithm that will
facilitate the partitioning of both parallel and sequentially dependent
tasks to a given hardware configuration. The algorithm has the potential
of being automated.

1.3 APPROACH

This study was comprised of three phases: Phase I - Literature
Search, Phase II - Simulator Analysis, and Phase III - Algorithm Design
and Demonstration. This three-phased approach provided a logical
sequence of research and analysis that resulted in the delineation of the
partitioning technique presented in this report.

The Phase I literature search focused on current documentation
in two major technical areas. The first area concerned fiight training
simulator computational subsystem designs. The second area addressed
software partitioning schemes for allocation of parallel and serial
application tasks to advanced multiple processor configurations.

The .Phase 11 effort was subdivided into two parts. The first
part was the analysis of literature collected to properly identify the
software partitioning goals with respect to flight training simulator
designs. The second part was the selection and expansion of the specific
approach for the techniques to be applied in the algorithm design to
achieve the design goals. Partitioning approaches considered included
manual allocation schemes, real-time dynamic task allocation schemes,
and a mathematical goal program statement of the allocation problem. The
mathematical goal program model approach was selected because of its
potential for systematically obtaining optimal partitions and related
quantitative measures in an automated mode, which are responsive to
alternative candidate design features. The features and measures that
can be modeled are described in Section 3 in terms of the mathematical
model, algorithm design, and algorithm feasibility demonstration. Model
measures include task sizing and timing; processor utilization; memory
storage, retrieval, and sizing; and real-time task constraints and
relationships.

Sowme problems were encountered in pursuing the Phase 111 design
to implement the mathematical goal program model when allocating a large
number of tasks and data blocks to a large number of processors, memo-
ries, and peripherals comprising the candidate configuration. It became
evident that a heuristic goal program algorithm needed to be designed
that interfaces with a linear program optimizer to obtain “good" task
partition allocations for large partitioning problems. TBE's Input/
Output Requirements Language (IORL) supplemented with flowcharts was

[P

used to delineate the algorithm design and provide the steps for perform-
ing a manual demonstration of the algorithm's feasibility.

1.4 RESULTS

One of the most important results of this study was a mathemati-
cal model defining partitioning parameters and measurements. From these
parameters, a set of guidelines has been recommended for the establish-
ment of a centralized automated flight training simulator computational
design data base repository for the Air Force. These design parameters
address five major areas, including flight training simulator computa-
tional interface requirements, baseline software task/data descriptions
(independent of hardware implementation), candidate hardware configura-
tion specification, a technology data base, and (most important) design
evaluation user interface data options. These parameters along with the
partitioning mathematical model provide steps for the implementation of
an automated partitioning algorithm for real-time simulators. Detailed
recommendations for algorithm implementation are provided in Section 4.

Section 5 expands TBE's findings, including related aspects of
our Advanced Multiple Processor Configuration study contract encompass-
ing areas for further research and development. In the multiple proces-
sor area, the impact of heterogeneous processor configurations and
potential reconfiguring capabilities is currently being investigated. A
major area for future study is the impact of higher order architectures
on partitioning allocation.

2. SOFTWARE PARTITIONING

To develop the software partitioning algorithm design goals, TBE
addressed the definition from both general system software design and
particular flight training simulator software design viewpoints. This
section supplies the basic definition of the software partitioning
enviromnment, the design goals selected for flight training simulator
software partitioning features, and alternative approaches considered
during this study.

2.1 PARTITIONING ENVIRONMENT

To fully appreciate the software partitioning environment and
its associated steps, one must first examine its relationship with the
system life cycle. Then, flight training simulator system life-cycle
peculiarities must be considered. The questions posed by this study in
both these areas concerned the identification of the software applica-
tion task features that are peculiar to advanced real-time simulation
computational systems and that influence the software design partition-
ing process. The system and flight trainer life cycles are now described
for the general system, followed by a description of the flight training
simulator software partitioning features. Emphasis was placed on iden-
tifying software features that characterize an optimal partitioning
scheme and that account for alternative candidate configurations and
provide partitions that meet real-time load balance constraints.

2.1.1 System Life Cycle

Figure 1 depicts the major phases of a system development
effort. The development phases that directly relate to or influence
software partitioning include subsystem interface requirements, sub-
system functional specification, and subsystem detailed design. In
addition, during the operational maintenance of the system, any changes
that are deemed necessary (to either correct for a design deficiency or
oversight, or to implement an expanded capability) imply that a reparti-
tioning of tasks may be needed to accommodate the required change. This
phasing relationship to partitioning holds for any system, whether it is
an aircraft, computer center, air defense system, ..., or a flight train-
ing simulator system.

For purposes of this study, the detailed design phase was
selected as the major area where software partitioning parameters become
known. Prior to this phase, a system partitioning is generally performed
to denote the major subsystems and their respective interface functions.
After the detailed design phase, actual hardware is procured from which
prototype build implementation is initiated. Therefore, the detailed
design phase has the greatest influence on mapping software tasks to
hardware and vice versa.

10

— e pa———

Required operational capability

Y

Conceptual System
system development
System
requirements
d Change .
. ‘ required]
Interface and ? l
subsystem -
requirements
| Operations and d
I maintenance g
HW SW ¥
Subsystem Procurement s
deve lopment :
|

; System
--I Functional Io- —a
if i ; acceptance
specification testing

] i 5
%-—FJetailed design jee— .

Integration and ‘
Lol verification ‘_J ‘
Build, debug, an testing 3
o verification —

testing

HW

1 Figure 1. The system life cycle addresses partitioning at subsystem,
: function, and detailed design phases for new and/or modi-
fied system development efforts.

11

e —

¢
:
i
?
!

The design of a multiple computer system traditionally has begun
with the hardware selection. Once the computer system has been selected,
the development of software begins. During development and even after
the system is installed in the field, there are various modifications to
both the hardware and the software. Because software has traditionally
lagged the hardware development activities, the hardware has had a
direct influence on software partitioning. As the details of the soft-
ware tasks become known, projected hardware resources are typically
found to be inadequate, which necessitates the acquisition of additional
processors and/or memories to meet system interface requirements. A
software partitioning algorithm must be able to address software appli-
cation design parameters, which are independent of a particular hardware
configuration, to permit a variety of design tradeoffs to be evaluated
for alternative candidates prior to the exact configuration selection.

Once a system enters the operational phase, maintenance becomes
the prime cost factor (indeed, maintenance cost is the largest cost of
the system life cycle). Change and configuration controls are necessary
for a system or subsystem of any significant size. As technology
advances, new software and hardware architectures may need to be imple-
mented. A tradeoff must be made to decide whether to convert or totally
redesign existing software. A software partitioning algorithm should
provide useful information regarding allocation of current baseline
software design tasks to the new or modified hardware architecture. As
with design development, software partitioning in the operational main-
tenance phase addresses the design details of any proposed changes.

The key factor for flexible software partitioning (from the sys-
tem life-cycle viewpoint) is the ability to define software design
attributes in terms of the dependent application software task/data flow
relationships. The software attributes should remain independent of,
but be mappable to, a particular processor architecture. The prolifera-
tion of requirements languages (RLs) and higher order languages (HOLs)
is a testament to this emerging philosophy in the DOD community. The
distinction between an RL and an HOL is that RLs are not currently
automated to the extent of target machine code generators for the RL. An
HOL such as JOVIAL, HAL-S, or PL-1 supports interpretation, data manage-
ment, and code generation from machine-independent HOL source code to an
intermediate level language that can then be specifically translated to
any one of the languages supported by different target machines. Once
the tasks have been defined in a suitable RL and HOL, the problem still
exists as how they can best be partitioned or allocated to the candidate
architecture. Once allocated, the resulting partition should be evalu-
ated in terms of predicted performance and cost/risk assessments by a
software partitioning model. Iterative feedback from this performance
evaluation model can then be used to perturb the partition based on
performance penalties to derive a well-balanced software execution
sequence.

12

i
§
{
|
.\
|
|
!
!

2.1.2 Flight Trainer Life Cycle

In addition to problems associated with the general system life-
cycle environment, the simulation training system environment offers
special considerations and problems with respect to software partition-
ing. Aircraft systems are continuously being upgraded, and this causes
changes to training requirements. Manual interfaces change when new or
modified weapons systems, embedded onboard computer systems, and opera-
tional tactical policy changes are introduced. These problems are
really no different from problems encountered during the maintenance
phase of the actual system. The key issue is when and how actual system
changes are received, evaluated, and introduced into the training
requirements.

Actual system test and performance measurement tools can and
should provide useful inputs for simulator training software required to
support the new/modified devices. In the case of embedded computer sys-
tems, simulated training scenarios could provide additional reliabilicy
tests of the actual onboard computer systems as well as the prime goal of
training personnel. As a result of these considerations, the partition-
ing algorithm should facilitate modular design definition input changes
and permit new technology configurations to be introduced as needed to
support a given evaluation. This should also include the ability to fix
allocations of certain functional tasks, such as a set of onboard com-
puter tasks, while permitting others to be alldcated by the partitioning
algorithm.

AFHRL supplied a benchmark problem and the detailed design docu-
ments and source code listings from the Advanced Simulator for Under-
graduate Pilot Training (ASUPT, now known as Advanced Simulator for
Pilot Training (ASPT)). These documents were analyzed to obtain esti-
mates on the complexity and sizing of flight simulator software parti-
tioning. This analysis identified 50 major application (both real-time
and support) tasks (some of which would be duplicated to support multiple
training stations, instructor consoles, weapon systems, and aircraft
models). The results of this analysis were presented at an interim
briefing.

It should be noted that a task is related to the application.
Its ultimate operational realization may be software, firmware, hard-
ware, or a combination of these, depending on the selected design config-
uration. The tasks being considered for the partitioning algorithm are
related to the computational subsystem of real-time flight training sim-
ulators.

Further analysis revealed that the trainer computational sub-
system is really comprised of a set of smaller functional subsystems,
such as simulator facility control, visual computational support, and
simulated aircraft mathematical models; thus, the number of processaors
and number of tasks for which selected software functions are being

13

allocated is reduced to approximately 30 tasks to three processors using
a common, shared multiport memory. In summary, flight trainer computa
‘tional configurations have both a functional partitioning of processors
and a task partitioning within each functional processor group.

2.2 DESIGN GOALS

Software partitioning of tasks to alternate candidate multiproc-
essor configurations must be a systematic process based on measurable
evaluation goals. The selected design goals for the partitioning algo-
rithm developed are as follows:

(a) With software system task flow inputs given, partition
tasks to a user-specified multiprocessor hardware configu-
ration subject to input constraints

(b) 1ldentify interdependencies among the tasks that require
communication links

(¢) Incorporate dynamic performance evaluation feedback to
determine the best partition to preclude system deadlocks
and account for critical path task precedence orderings

(d) Provide a means of balancing the processing load as a func-
tion of processor utilization, which is evenly distributed
among the processors such that no one processor is satu-
rated while others remain idle for appreciable periods of
time

(e) Provide cross reference of task(s) assigned to each proces-
sor and processor(s) assigned to each task

(f) List critical constraints when a valid partition is not
obtainable

(g) Provide a development cost estimate as a function of task
sizing and instruction mix, which is related in terms of
assigned candidate processor language compilers and debug
tool measures.

In deriving this set of goals, several issues have been dis-
cussed pertaining to the evaluation enviromment in which the partition-
ing algorithm is to operate. The baseline set of questions was:

(a) At what point(s) in the system development cycle is the
algorithm to be used?

(b) What timeframe and computer resources are anticipated for
candidate evaluations?

14

|
i
9

5
i
;
'
3

(¢) To what extent will the system requirements be formatted?
In what format?

(d) To what extent will the alternative candidate design con-
figuration be documented? In what format?

The answers to these questions relate directly to the level of
software partitioning and types of system parameters that can be
modeled, allocated, and measured. In summary, there are no definitive
ansvwers to these questions since each flight trainer evaluation tends to
be tailored to specific needs. This does not mean that systematic
methodologies and standards do not exist, but they do differ from one
project to another. The potential use of an automated partitioning
algorithm will require systematic collection and development of flight
trainer requirements, software specifications, and candidate configura-
tion inputs. This contract has concentrated on the definition of parti-
tioning algorithm logic in terms of design inputs which are transformed
via technology data and user evaluation options to assist and assess the
partitioning of tasks for a given candidate configuration.

2.3 ALTERNATIVE APPROACHES

Software partitioning to date has been primarily a manual proc-
ess based on experience gained in development of previous flight simula-
tors. The designer community continually evolves and improves partition
allocations using projected resource requirements and implementing the
partition to see how well it performs. In some cases, real-time alloca-
tion is determined by a master computer using a predefined assignment
scheme that incorporates certain dynamic application considerations.
These schemes, whether manual or partially preprogrammed controlled, are
not easily automated, since they generally require that a specific sys-
tem allocation be implemented for a given configuration. Manual projec-
tions are limited to a few alternatives for a given type of configura-
tion, but they must be redone for alternative configurations.

In surveying potential automated models to meet the design
goals, the basic problem to be solved is one of distributing the software
system tasks and related data blocks to a candidate hardware architec-
ture network such that a representative stressing simulation load is
handled. 1In general, this type of problem is typical of mathematical
programming problems addressed in an operations research (OR) environ-
ment. Within this field, there are a variety of algorithms. The follow-
ing are some of the more familiar:

1. Transportation problem of product transport from production

locations to warehouses and customer distribution centers to
meet customer demand at minimum cost.

BRI TP re

Ly

PR TR

Traveling salesman optimal route determination to service
customers

3. Knapsack packing of items required for a camping trip to be
distributed evenly among campers

4. Capital budgeting problem of choosing among independent
investment alternatives to maximize return subject to cur-
rent investment fund constraints

5. Machine shop production scheduling to meet product demand
deadlines with minimum machine restructure between jobs and
given employee mix.

The software partitioning problem has attributes similar to each of
these.

In the case of the software partitioning problem, a descriptive
statement of the model is as follows:

1. Find a partition that best satisfies alternative evaluation
priority functions:

a. Balance the processing load among the processors
b. Balance the memory storage utilization
¢c. Minimize development costs.

2. Subject to:

a. Real-time task resource requirements
b. Predicted performance simulation feedback.

When defining a software task partitioning model, a number of
factors must be considered. The model can very quickly get out of hand
in terms of size for current optimization techniques. Thus, the model
design developed under this contract restricted itself to a static allo-
cation problem that is mathematically stated as a linear goal program
problem in Section 3.1. It is static in that it is a generalization of
the real-time application tasks to be allocated to a given candidate
configuration. 1In this sense it is not a dynamic real-time allocation
algorithm. The static model is very useful in the candidate design
evaluation mode, since many numbers are based on predicted task sizing
and timing plus anticipated computation iteration frequencies to support
given training loads. The static model permits average to worst-case
growth analysis in a systematically controlled evaluation eavironment,
which provides the means to ensure a complete design description has been
input and independently provides a measure of processor utilization,
memory utilization and predicted software development cost.

S SRR

Even in the static model enviromnment, optimization data base
sizing and numerical roundoff problems are encountered for evaluation of
a computational system involving much more than three processors, 20
tasks, 40 data blocks, and four memories. Specific sizing is addressed
in Section 3.2. For this reason, a heuristic model has been designed. A
heuristic model is a means of limiting computations to a logical sequence
of iterative improvements via allocation tradeoffs until a certain
objective level is either found to be feasible or a bottleneck has been
isolated.

This section has discussed partitioning considerations. The re-
sultant algorithm design details are highlighted in Section 3. Imple-
mentation considerations are given in Section 4. Section 5 incorporates
areas for further research with respect to optimizer techniques and data
base selection.

3. MODEL DEVELOPMENT

Software partitioning model development is presented from three
different technical viewpoints in this section, including the mathemati-
cal definition, the detailed design highlights, and a feasibility demon-
stration synopsis. The model is expressed in generic computational
system terms where the major components are tasks, data blocks, proces-
sors, and memories that are partitioned to service an external baseline
load environment. The mathematical model definition delineates all the
parameters and the basic relationships that must be satisfied for a valid
partition. It also provides a statement of objective functions that
permits optimization of the partition when the basic relationships are
found to have a feasible solution (i.e., a feasible partition).

The algorithm design highlights are presented here in terms of
the systematic procedural step features with cross-references to
detailed appendices. Appendix A provides user input information. Out-
put report formats are provided in Appendix B. Appendix C contains the
feasibility demonstration that emphasizes the user environment of input
formulation, critical intermediate step results, and final output summa-
ries. Detailed computations and design logic are enumerated in
Appendix D.

3.1 MATHEMATICAL STATEMENT

This mathematical statement provides mathematical terminology
and definitions for alternate evaluation priorities and constraint form-
ulation based on a generic statement of a candidate configuration for
which a set of software tasks are to be partitioned. Each mathematical
symbol is defined when first introduced. In addition, Appendix C con-
tains a master list of mathematical symbols and related design defini-
tions. A special effort has been made to use a unique symbol for a given
entity. It utilizes a combination of symbol definition with a combina-
tion of linear programming and goal programming model formulation termi-
nology. Although knowledge of thes» modeling and solution techniques is
helpful, it is not essential to the understanding of the basic expression
of the software partitioning problem model.' The solution techniques
with respect to the software partitioning model are considered in the
design highlights of Section 3.2. The model is now stated.

3.1.1 Mathematical Terminology

The mathematical model formulation permits the major decision
varisbles to be enumerated in terms of a baseline software load for a

'Ignizio, James P., Goal Programming and Extensions, D. C. Heath and Com-
pany, Lexington, Massachusetts, 1976

iy, - AP - o

given real-time interval of length, 7. In the case of the flight
trainer, 7 might be chosen to represent the maximum time permissible for
a complete real-time cycle. The baseline load could represent a
stressing training mix of tasks and data relationships that must be
performed to support the given trainer facility exercise; for example, a
two-on-one, air-to-air, combat maneuvering situation may be selected.
For more detailed partitioning loads, 7 could be selected to represent a
specific segment of the real-time cycle to further analyze and partition
parallel versus dependent task/data flow relationships.

The major decision variables (outputs of the algorithm) with re-
spect to software partitioning allocation are defined as follows:

xtp = 1, if task t is assigned to execute on processor p

= 0, otherwvise

e - number of task t executions on processor p for the
tp . . .
evaluation problem time period
ytp ~ development cost to implement task t on processor p as

currently partitioned
s,p = 1, if memory storage m contains block b
= 0, otherwise
hp - number of memories where block b is stored

- number of times 1input block i of task t is input for

a___.
mpti task t on processor p from memory m.

- number of times output block o of task t is written or

w
mpto updated by task t on processor p to memory m.

These outputs are determined for a given set of software task and candi-
date architecture inputs. The basic algorithm control inputs are
denoted by:

T - number of tasks to be allocated to processors

P - number of processors

M - npumber of memories

B - number of distinct storage blocks to be allocated to memories
(this includes instruction and data blocks)

19

{
4

A Ay

Q - number of communication links

B - maxiwum number of input and/or output blocks per task.

The values of these parameters control the overall algorithm sizing,
timing, and looping logic.

The baseline task load may be represented as configuration-
independent, processor-dependent, and memory-dependent input parame-
ters. The configuration-independent input parameters are defined as
follows for each task, t:

N - number of times task t is to be executed during the evalua-
tion interval, 7, for which partitioning is being dome

S_ - maximum time limit per task t execution

I, - number of distinct input blocks for task t

4,. ~ global data block index for task t input block i

A_. - percent of information input for task t from block i
O0_ -~ number of distinct output data blocks for task t

0__ = global data block index for task t output block o

Q,__ - percent of information output from task t to block o.

to

The processor-dependent task inputs are defined as follows for
task t on processor p:

ctp - time for task t execution on processor p |

1

- resource task management coefficient for task t on proces-~

sor p if time or data enabled task (these tasks require

periodic enablement or polling by the processor to which
they are assigned)

L

o

~ resource task management per task t execution on processor :
p for slaved enabled task (these tasks are enabled by
another task)

rtp
d__ -~ the cost coefficient for developing task t to run on proc-

tp essor p independent of allocation

6t - the cost coefficient for resource management of task t
P development on processor p.

20

Section 4.2 discusses the implementation means for computing these
values based on independent task descriptions, processor configuration,
and a technology data base. The mathematical model assumes that these
values are known.

In addition to the task-to-processor allocation relationships,
the storage allocation of blocks to memories operates on a similar con-
cept. A master block list of distinct data and/or instruction blocks is
independently defined and then mapped via the candidate configuration
and technology memory parameter inputs to supply the following parame-
ters with regard to block b, memory m, processor p, and communication
link q:3

d b~ length in bits of block b when stored in memory m

m
Lm - length of memory m in bits
ahp = 1, if access from memory m to processor p exists, i.e.,

there is at least one access link q for m and p
= 0, if otherwise

%o bits/second transfer rate from memory m to processor p
P based on statistical composite of access links for p and m

Qm = 1, if processor p is permitted to change contents of
P memory m, i.e., there is at least one write access link q
from p tom
= 0, if otherwise
Wop bits/second transfer rate from processor p to memory m
P based on statistical composite of write access links for »

and m.

The task relationships to these blocks are defined as part of the real-
time constraints in Section 3.1.5.

3.1.2 Processor Utilization and Crowth Balance

Given the mathematical terﬁg defined in Section 3.1.1, the proc-
essor utilization, U, associated with a partition may be expressed as
follows (for each prdécessor p=l to P):

T
1 2 .
U = —— (e, ¢+,)e task computation
P T =1 [tp tp tp and resource

management time

(2]

> AZ

i1 ti o) th mti mptl task in?ut
processing
ot
-1
+
2 ﬂtoz “wplmto“mpto task output
ot m=1 processing
+ Rtp xtp] . task resource
management

An absolute constraint is that:
Up.s 1 for p=1 to P.
In other words a processor, p, cannot be more than 100% allocated.

The objective function for processor balance may be written:

p-1 P ,
Minimize Z Z |Ui - U, . Minimize differences
i=1 jmiel J in processor loads

It should be noted that the presence of absolute values implies a non-
linear objective. The processor utilization balance can be mapped (via a
ranked ordertng of the U » Ué such that U, *> U.') to a linear objective
for a given partition. j

This objective statement assumes that perfect balance is the
ultimate or optimal partition. The candidate design being considered
may represent only a portion of a bigger design evaluation problem. 1In
this case, the use of certain processors may be favored, whereas others

" - should not be considered. To handle this more realistic partitioning

situation, each processor has two additional parameters, which are user-
specified:

lP - absolute upper limit for processor p's utilization

Gp -~ goal or target limit for processor p's utilization,

With these additional parameters, the following constraints apply:

G. < L Goal must be
P P less or
equal to the
absolute limit.
Up < LP Each processor

must be below
its absolute
limit.

The objective for the optimal partition in terms of processor utiliza-
tion becomes:

P-1 P
Minimize E z (U;-6,) - (uj-oj) .
i=1 j=iel

This basically states that the processor utilization is in balance with
respect to user-specified goals. In the case of a flight trainer soft-
ware partitioning evaluation, G, could reflect a percentage that allows
for future growth. Thus, G J)O.GO reflects a 40X growth factor for
processor p. P

The algorithm as currently designed (Section 3.2) assumes that
an initial feasible solution is provided by the candidate design and
utilizes a heuristic solution based on the absolute difference between
the most heavily loaded processor and the least loaded, taking into
account the goal growth reservation to distribute the process load.

3.1.3 Storage Utilization and Growth Balance

Storage utilization, u s may be expressed for each memory unit,
m=] to M, as:

. B
1
u = — 2: £ .8, Sum of blocks
n L- b=1 w “ub stored divided
by total memory

23

As with the processor balance formulation, storage utilization cannot
exceed the capacity of the device.

u <1 for m=1 to M
m

In addition, storage growth balance can be established with a
respective goal utilization, 8y? and an absolute limit, 8 for each
memory as follows:

M-1 M
Minimize Z E (ui-gi) - (uj-gj)

i=l j=i+l

vhere
u < 4 for m=l to M.
m m

As with the processor utilization, the solution technique
defined in Section 3.2 for storage utilization is based on a heuristic
driven by the most used and least used memory allocations with respect to
input goals.

3.1.4 Development Cost

Software development costs are a function of task complexity and
programming support tools available. In particular, the heterogeneous
multiprocessor system adds another development cost concern, i.e.,
coding of a task to perform on more than one processor type. A common
program scurce language significantly reduces duplicated coding efforts.
Thus, the development cost for a given software task, t, in the model may
be stated as:

P

l)t = E [dtp xtp one-time development
p=1

+ 6:9 x':p resource manager development

- dtp ycp] duplicate utilization.

where

ytp = 0 for p=1

- ' i = -'
max l\ipt X i for i 1 top 1’ for p>1

24

T3

where —xi = 1, if an identical source language is
available on processor i and p (i # p) for
task t

= a technology~-specified constant if differ-
ent languages are to be used (i #p)

= 0, if i = p.
I1f the code already exists, then dtp=0.

Note that the multiplicative factor for determining Yen Can be stated as
an equivalent series of linear constraints because of fhe zero-one vari-
able x__ (task t is either assigned to processor p or it is not). These
(p-1) cOnstraints are enumerated as follows for a given task t on proces-
sor p (for p >1).

<
e
1A
o

Apt Xe1 T

IA
o

\2pt Xe2 ~ ytp

A(p-1)pt Xe(p-1) Yep = 0.

With this set of constraints, minimizing y__ in the achievement function
ensures that y__ will assume the appropriate maximum as defined in the
original defintfion.

The goal objective for software development cost is now stated

Minimize Z D,.

t=1

=3

This is basically a problem of reducing development cost. The design
attempted to reduce development cost (Section 3.2) to be less than a user
supplied value, D, where D represents a ballpark estimate for the total
software development. The unit used may be man-years or dollars, depend-
ing on units established for the technology data base (described in
Section 4.2), which will be used to translate the task t instruction mix
(Section 4.2) to its one-time development cost (dtp) for processor p.

25

AR 973 20y

The common language coefficient, \. _, is also a function of the tech-
nology-processor-related data (Section 4.2) and the language factor
selected for the task.

3.1.5 Real-Time Task Resource Requirements

The major constraint areas interact with the objective priority
evaluations to further specify acceptable partitioning attributes. As a
minimum, the following constraints apply to basic task resource require-
ments and processor accountability:

(a) Each task, t, must be assigned to at least one processor.
This implies T constraints of the following:

P

E x. 21 for t=1 to T.
p=1 tp

(b) If more than one processor is permitted to perform the same
task, a resource management overhead will be allocated to
task t processors via the processor utilization objective
of Section 3.1.2. However, to ensure that x, is properly
coupled with etp’ the following constraint nust be applied:

e
x -tz 0.
tp Nt

In addition, constraints must address task iteration rate and task ser-
vice times to ensure that real-time task timing requirements are met:

(a) Given that task t must be executed N_ times during the
problem time period, T, the task iteration rate constraint
is:

P

p=1

(b) If overlap of task t execution is not permitted (i.e., t
cannot be executing on more than one processor at a time),
the following constraint applies:

P
. «

(ctp + rtp) e¢p = minimm (T, N, St)

p=1

where St is the maximum time limit for ome execution of task
t'

Note that if

ctp + rtp > St

then e can be automatically assigned a zero value and
deletedPfrom consideration.

Task data dependencies must also be satisfied. These constraints

include:

(a)

(b)

(c)

All data blocks associated with task input must be availa-
ble to the processor(s) that are permitted to perform the
task. Thus, for imput block Lti’ the following holds:

M

-xtp * E ampsm"vti 20

m=1
for i=1 to It’ t=l to T, p=1 to P.

All data blocks associated with task t's output must reside
in memory storage m, which can be updated (changed) by any
of task t's processor(s) p. If Xep satisfies

xtp + xtp =1

then for a given task output, block b-oto’ the following
holds:

M
xtp+uxtp+ 2 wmpsmb_hb > 1
o=l

for t=]1 to T, o=1 to 0_, p=l to P. h, represents the number
of different memories that have duplicate copies of block
b; thus, this constraint requires all duplicate blocks to
be updated (see next constraint set).

Any duplicate data blocks must be held to a minimum; there-
fore h, may be thought of as a penalty to be added as an
additional objective function with the following additional
constraint:

e SN ik st e, ¥ o m

i i il i i e M

(d)

(e)

hy = 1 (at least 1 block is in memory)

and

E sy ~ My =0

u=]

for b = 1 to B.

Input timing must properly account for the number of task t

executions on processor p (et) for each task input block,
Lei? i=1 to I P

M
®p " 2, mpei " O
m=1
amgt:i
a . - =
and mp 8. . N > 0 for m=] to M

ty t

are used to ensure that Lti is available on memory m.
Output timing must account for the number of task t execu~-
tions on processor p (etp) for each task output block, ©

?
o=] to Ot: to

IA
o

o Vmpto " N, - smoto)

and

w
8 - mpto > 0 for m=] to M
Wop "m0, N

are used with a corresponding achievement function that
minimizes w to ensure that all duplicate blocks of ¢

mpto to
are updated.

28

3.1.6 Performance Simulation Feedback

Sections 3.1.2 through 3.1.5 comprise the fundamental model
objectives and constraints that must be set in terms of a valid static
allocation of tasks. Performance bottlenecks detected by the simulation
mode being developed under separate contract {(No. F33615-79~C-0003)
will add additional constraints and/or modify coefficients. In particu-
lar, the data transfer objective coefficients for given interfaces
between a memory and a processor may be readjusted to penalize use of
certain processors for a given task and/or memories for certain data
block allocations.

A stronger set of timing constraints may be required for depend-
ent software task threads. A task thread, F,, may be defined as a group
of serially dependent tasks with the following notation:

Fk -{fkl, so00y fkck}

where f indexes one of the T tasks. In general, task f must have
execute&gc percent before task Pk can be enabled. Thus§ the tasks
defined as &Sthread are not permittJ%'ko run simultaneously in parallel
processors. This constraint may be written for each thread k as follows:

P
2 2 (thk (ctp + rtp) ep * Rep xtp) < minimum {7, T, }
teEF, p=1

k

for k=1 to K, and T, represents feedback timing for thread K. A further
assumption is that if task t is an element of a software thread, F, , then
task t may not be an independent task or an element of another task
thread. If a task is required in more than one way, it can be defined as
a group of different tasks for partitioning purposes.

In general, these threads represent critical system task path
flow bottlenecks as determined by the performance simulation of a given
partition allocation. The algorithm introduces new or revised con-
straints until one of the following conditions exists:

(a) Satisfactory solution found
(b) 1Infeasible condition identified
(c) Maximum feedback iterations performed.

The current solution state is to be saved and/or printed for future
evaluation as requested by the user evaluator.

29

PRREW. "~ ol o s D

“aly Livew.oe a0 L

-

'&-«'«M’v‘ i
\

3.2 ALGORITHM DESIGN HIGHLIGHTS

There are many mathematical program techniques, including both
linear and nonlinear optimizers and heuristics. The partitioning model
requires integer solution values that immediately classify it as a non-
linear global optimization problem even though the model itself consists
of linearly expressed objectives and constraints. In addition, two of 4
the three achievement priority functions (i.e., balance the processor
load and balance memory storage) are nonlinear in their formulation of
minimizing the sums of absolute differences. These nonlinear goals
combined with the goal program matrix, which is sized according to the
parameters represented in Table 1, would be a challenge to both sizing
and timing of commercially available mixed integer linear program models
] with a single achievement priority.

To determine the viable design alternatives, a study of goal
programming was made, including several military goal program applica-
tions that have been implemented. Applications included weapon system
slice optimization in relation to planning force analysis and a balanced
budget allocation model for mixed project/agency funding. Both of these
applications interface goal programming models with other analysis tools
(such as simulation, input/output analysis, and regression analysis) to
provide a set of automated operational evaluation tools. These
additional tools provide a means to cross-check and supply detailed
model data values that are used to calibrate the goal program model. The
calibrated model is then used for selected parametric studies to
determine impact on solutions in terms of parametric margins and
solution sensitivities. Both of fhese applications utilize modified
versions of the classical textbook '~ multiphase goal program computer
algorithms. A major drawback to these codes is their susceptibility to
numeric roundoff error propagation for problems involving more than 50
to several hundred variables and constraints. In addition to the
numerical roundoff errors, the multiphase codes studied do not use
dynamic core memory management. This requires the entire matrix and
agsociated bookkeeping variables reside in main memory.

In lieu of funding the development for a mixed integer goal
program optimizer for larger problems, an alternative algorithm is the !
sequential use of a good commercially available linear program optimizer ,
interfaced via a goal program driver that introduces each achievement
one at a time. This permits continuous solution problems with up to
16,000 rows to be handled, given adequate dynamic disc storage. Current
state-of-the~art integer solutions are restricted to several hundred

1
! Ignizio, James P., Goal Programming and Extensions, D. C. Heath and i
Company, Lexington, Massachusetts, 1976 i

2 Lee, Sang M., Goal Progrsmming for Decision Analysis, Auerbach Pub-
lishers, Philadelphia, Pennsylvania, 1972

(SMOY¥) Z + satqeidep = suwn|o)
(O+I)WdL + (O+ T +T)dl2+12+T+H+d+8-= Smoy
(0 +1) WAL + d1E + SW + T + W+ d + 8 = s3|qeLuep
veSty 219°1 062°1 £ £ 9 12) L 2 qoud
096 8YE v92 el ¢ e tat]l 2 s T qo4g
£68°vE | TL2°21 16£°01 €1 ¢ 9 | ovt| v | 09 S
YELET | 889°‘t 8GE Y €] ¢ 9 | ozt| ¢ | ot t
v22°01 | 809°¢ 8c0°‘¢ £ 1 ¢ v | o21] £] ot £
00°8 | 600°€ £8€°2 2| ¢ v | 19] €| ot 2
$28°v L1 0£€°1 2| ¢ e | 19| 21 ot 1
SNWN102 | SmMoY S319YI4VA o] 1 W g]d 1
XIYLVW INV1INSIY SYILIWYYUYd T0YINOD EIN'M]
ONIZIS XIYLVW Wv¥90dd W09 JIsve T 319vl

YIS L S, ©

variables. The sequential use of a linear program optimizer is the
approach recommended for further study in addressing a subset of the
software partitioning algorithm as designed in this study. The design
has remained independent of a specific computer optimizer code.

Even with the sequential mixed integer linear program technique,
the sizing of the partitioning problem (given in Table 1) is prone to
challenge the best optimizers without some careful matrix selection gen-
eration techniques. There are two major areas of concern:

l. The time consumed in determination of an initial feasible
solution

2. Excessive iteration thrashing to determine "optimal" integer
solutions.

The study of goal programming included a survey of heuristic techniques
that can facilitate the search for improved solutions given an initial
feasible solution. In practice, application-customed heuristic algo-
rithms have provided an efficient means for handling and reducing the
large solution space of alternatives to be searched.'

In the case of flight trainer candidate designs, the designers
have an implied partition which can be used as the initial solution. The
partitioning problem then becomes one of "Does a better solution exist
with respect to load balance, memory balance, and development cost?" The
incorporation of an initial solution step has been recommended as an
implementation step requiring further study for obtaining an expanded i
evaluation capability. The current algorithm design assumes that an B
initial solution is supplied and proceeds in a heuristic manner to seek a 3
better solution. ’

|
I

To achieve a well-defined user evaluator interface of partition-
ing input data, a customed heuristic goal program driver, and solution
summary capabilities, the Partitioning Algorithm for Software Systems
(PASS) has been designed emphasizing the four major processes denoted in i
Figure 2:

1. User input interface and processing referenced as PASSI
2, Basic partitioning algorithm referenced as PASS2

3. Augmented partitioning algorithm (PASS3) to handle dynamic
performance prediction feedback

' Ignizio, James P., "Solving Large Scale Problems: A Venture into a New ¥
Dimension,"” Pennsylvania State University, 1978

32

e ————————— -

*sdajs wyjr4obie buruorjrised Jofey -z aunby 4

U (f°V)I81-81V3Q,
seJnsoey

JOYBINWE
as2unwio) s0d
UrIm 30 483u] 4,
(f°119-8wvaa
Uo 313409 030D

O rem -0 ..

[JJ 14
. 41 104 w0313
XN— 'y 3z _ssvd) -4nd 108 1ug

s® 1314020
poejISsONDOS

uoiy1jyaea

L‘"““”") BSUIPIOIDD
ESEVd A S3uUsWey | NDey
v Nﬂ S2JANOSOd D IDYE

403 Juncaao
S pPUD uwoijz tys04a
2 ﬂW(E= ®J0MY)05 BIDP

mnnIN ~1PUDI h)13uepl

VﬁllHI v ﬁ“”!,J‘dJ_ s®31) INAdu) Jesh

| .|ﬂ'0!: Yo peehg s 1GLY

m s Ine _ :l] pPUD sse3PWMBIDA

ue1313dnd _ae3yeq, =|n nn(..: T SSvVd 1043U0D 21181V IU}
! Jt SU(wieyep ssgc || ___msst pPuD ‘I1pepoey .,

oy ®en1j308FqQo

anduy 09 SuU|IpIocITD
e nspow o WDUAP
PUD D130

4yeq eypnjeal o

¢ eyDPIPpUL)

40) weyshg sasom

YL T R TIRYEYL VI
puUD I8N IPA] 4,

S$IvaIo

4, Solution summary reports (PASS4) of a given partition for
candidate design i.

Prior to describing each of these steps, the overall design flow of the
steps and their interfaces is presented.

The major external interface (exclusive of an optimizer) with
PASS include the evaluation user and a multiprocessor configuration per-
formance predictor simulator. The user interface consideratioms for
actual implementation are expanded in Section 4, with emphasis on
incorporating a modular, automated data repository to facilitate input
preparation of PASS] and maintenance of current flight trainer design
parameters with respect to given partitions (PASS4). The performance
predictor interface is designed to interact with the Computational Per-
formance Predictor Simulator (CPPS) being specified and designed under
separate contract. The iterative process of determining a new alloca-
tion (PASS3) based on performance prediction feedback is performed until
one of the following conditions is reached: (a) satisfactory partition
is found, (b) design bottleneck is identified, (¢) maximum iterations
have been reached.

3.2.1 Input Processing Step PASS!

The mathematical statement of Section 3.1 contains software,
hardware, and combined software/hardware parameters. The design efforts
of this study have emphasized the separation of any combined parameters
into basic hardware and software components with the aid of technology
data base tables and computational formulas necessary to generate the
given "combined" parameter. Thus, all task/processor and data/memory
parameters are derived from independent software and hardware design
configuration inputs (see Section 4.2).

The specific inputs are defined in Appendix A. Figure 3 deline-
ates the major design process flow for user input editing and computa-
tional sequences to properly set up for the actual partitioning steps
that follow. The design demonstration (Appendix C) provides the
detailed computations to map the user input into the internal partition-
ing algorithm control and lookup tables listed in Table 2. Appendix B
provides representative report formats for the user input echo, which
consists of the reports listed in Table 3.

3.2.2 Basic Partitioning Algorithm (PASS2)

This step provides the basic controls and logic for interfacing
with the three user-ordered heuristics to determine whether an improved
partitioning solution can be found. As mentioned in the introductory
remarks on design in Section 3.2, the basic assumption is that an initial
feasible (with respect to real-time constraints) partition is supplied.
The resultant basic partitioning algorithm flow is denoted in Figure 4 as

34

S e Y e i, T

PRGN {5 SRR

*MO|J sS3doud 3ndut adsn

AL W B,

*¢ aunbl 4

T 7}
sset

ONIZLIS Dl1sSva-

_ (nan13d

NOTL1VDINNUKOD-
ABOHIN/NO0TA~
0E3ID0YJ/NSVL -
S$1N3ID14430D I1VEINID
$37GvV1 4N-%007
SNINOILILIUVY
dn-13s
5891vd
SNOILDIN1ISIN 2591
7021802
NO11V201V a11ne
S1NIVSLISNDD
OVl AJd11N3OI
$311130134
INILAHIIN 138 y vidaLr1I¥d
NOILVNIVAZ
s$S330ud
88S1vd
851
438X NOILVENSI 4
-NOD 31VAIGNVD
HSI1lavis3
3levi 01 3ID1A30
QUINDIA ONVEX3I
NOTL1INI 3G
NOIL1VIN3I INOD
21Lva1aNVD
SS$3008d
sEvivd
gev1

STI08LNCD 43¥X NSVL
/7N007d HSI16ViS3
SNOJLINI 430 NSVL
AJdI¥3A ® ALNNOD
SNOILINI 430
A207Q viva
AdL¥3A % LNNOD ¢

0343183
$§301A30 LANNOD
3Navi IAD1IA3Q

aAIN03¥ a1NQA
AJDN3LSISNOD
YILAUNVEVL AJTUA3IA

SANIOGVIH AVIdSIQ
/78431N1¥4 QTING

IHNIL %

F1Va HOL34 "9°Q
‘HO3L AJI¥3IA T NAJO

SNOTLINT 430
NSVL OGNV
S3XJ079 AS
$$3004d
Sscivd
. mect

opmwruM¢&mmmg
FDVANILNG
£$32084
ssz1vd
8821

$.Q1 NOILVNIVA3 GV3Ia
S331NNOD 10ULINOD
o¥az 9v4

20833 138

NOTLiVvOl 4118301
NO¥ ONV
NOIAVZIWVILINI
sstIvd

sstt

——p

Crasna)

35

TABLE 2. INTERNAL PARTITIONING ALGORITHM CONTROL AND LOOK-UP
TABLES ESTABLISHED BY PASS 1

TABLE TITLE

Limits, Constants, and Codes

Current Problem Sizing Controls

Priority Controls

Current Processor List

Current Memory List

Current Communication Link List

Current Internal Device List

Task/Processor Allocation and Restrictions
Memory/Processor Allocation and Restrictions

Block/Memory Allocation, Restrictions, and
Coefficients

Master Block List

Master Task List

e e A AR

36

W AR A T N

pr=v—rcs

TABLE 3. USER INPUT ECHO REPORTS THAT ARE SPECIFIED IN APPENDIX B

FORMAT* | REPORT TITLE

1 Standard Run Identification

Hardware Component Summary

Data Block Summary
Task Summary

Baseline Load Summary

Evaluation Options/Restrictions

Evaluation Priorities

(o] ~ (= IS) | L) w N

Basic Partitioning Problem Size

* Format reference to Appendix B

s g e g s g B
T TR —

v oo, o T ST TR D Ay T B e ik

*MOlJ | 043u0d wyjtuobie buruoryrised oiseg ° aunbiry

=2 | 3

u (@LTLT¥ED)
3 F —— - ————
g X o D o . uan.nnosq
N 4 ﬁ _1N3NIN0ALUL
4 SNSVL-
u.::nno._u S3I1YOUIN- |
ANIHIANOS ML Iy SYDESID0AII~ s3avl ©
e £7v03 vna SNIVLIS/ 108180 s
) ~IAIOGNI 0L 1234834 J11S1AN3IN
) Hi1IM SIANQVIAVA IVILING
SNILNGIXLINDD INVE <7 4n 138
. . s8z2vd
1 IWwos) .. Em2z
MU0 18 3d ssczvd $713A37 30NVH3II0L
___ B8c2 40-1N0 SAVId
$I13A3Y TALINlavEVId
ANIHNIAIIHOV NO11n10§
‘1. AWILINI- AVILING
L $I3AIT AdI83A
o (3 o3 1 s1) 0a ANIVELENOD ss12vd
. 4. ‘ 1 . INIL-TVIE- | .1z
3LN4N0ID &
.1
ABIND)

© e = WO,

being comprised of initial solution verification, heuristic control
table setup, and user-specified, priority-ordered heuristic executions.

There are threz basic heuristic algorithms corresponding to the
three objectives or achievement functions: processor utilization
(LOADBL), memory utilization (MEMBAL), and development cost (RDCOST).
Figure 5 denotes the major selection branch as being a function of the
user-specified priority execution order GOAL (g), where g is the current
priority level being executed. Prior to invoking the appropriate heu-
ristic, a test is made to determine whether the basic priority goal level
has already been achieved. If so, a return is made to proceed to the
next priority level.

The major features incorporated, in the design permit ranking of
the current partition solution variables with respect to impact on the
given priority under consideration. The following ranking definitions
are utilized for each of the respective heuristics:

1. For the load balance heuristic, processor p's utilization,
, is subtracted from its goal, G_, to define U'_ =G - U_.
Tﬁe resultant U' array is then ranﬁed from high tB 1owPvalubs
(i.e., those below their goal to those above their respec-
tive goal in order of difference magnitude). The resultant
ranked array is then used to determine whether the load is
currently in balance, i.e., (U', - U' GTOLPU) with respect
to a user-supplied tolerance (GTbLPU) %or processor utiliza-
tion. The object is to offload some of the tasks from the
heavily utilized processors to the lighter loaded processors
to obtain a better balance, as denoted in Figure 6.

2. For the memory balance heuristic, the allocated memory, um,
is subtracted from its goal allocatlon, g , to define u' =
9g “Up The resultant array, u' hen ranked (in a
similar fashion as processor ut“ﬁlzat1on) to determine
vwhether the current memory allocation is in balance accord-
ing to the user-supplied goal (u'l -u' GTOLMU). The
objective (Figure 7) is to reallocate some of the blocks
from the over-allocated memories to the under-allocated
memories to obtain a better balance.

3. . The development cost is a minimization problem of individual
task development cost. Thus, the tasks are ranked from most
expensive to least expensive. The ranked cost array can
then be systematically processed (Figure 8) to determine
whether a more cost-effective solution is possible (i.e.,
can this task be implemented on another processor in the
candidate configuration of less development expense and
still meet real-time constraints?). It should be noted that
this priority is only applicable to a heterogeneous set of
candidate processors.

e en L

e

Stk

T NN

P ot
S 3

=

el | S et U i S -4 o R i R L e S g b T NG UG e B oy Do 1 ol et ol . G res LA oS DA b $ R

*$53204d UOL3I9(3S I13SLJNIY A3ta0pagd °G 3a4nbyy4

D s P e (P (P - —
JILST13NIN)
T1sod0d | - -
: AZe2 __ avauau F8avo o
St ___m2y2 szez -
T B
R od. o d.
¥23HD __iv.&ij o | N evoall -
W IONVEIT0L ; || mBisz]] 1. _arez LA ezt
. s

NOIAVIOONIV A¥OMAN V

1sod> | by . o
AN3U40I3AIA € 1=

NOILVZIIL1N 30SS3D084
1
A Wn (2% o
—— — 1 W9
1| #ouwa Q1VANI ,\ﬁHd_, "~
a1

C Aain3

[-

Lu:d ™)
"1° O pROCESS TACH PROCESBON
- J ABOVE ABSOLYTE LiMmT
€l g s
A geranx
PROCENIORS
WHECH ARC .. i T ——
Sl [feseiee. o k|
Wi —t——
Y T 4
lh;iggsezm.g_‘ﬂLn . ii" =2 'O
1 nnu A riven
[3T) 1a3) aS OvERLOADED
reocessor 4
[} l.:-:*l A U VY
Ol \. Fikl
v & yor tacw
PROCESSON K
. e stLOw 178
[eedFeoiini ") SoaL LeveL
CAR PEeroSn
oM or
PRUCESEOR 3°'0
e TABRS
ez |
b——-(@é&tw it céiﬁuﬁ:‘ D
Anceuuu J A ynsuccessrut.
L v REALLOCATION AT)
() [z

III.'.Z;.TJI

Bl

& gone PROCESSORS
ARE ABOVE LINET

a

* (papny 2u0)) 513sL4n3y dueLRq

peo| J0SS32044

*g aunbt 4

(L
- I
WM 3
-t] 4
0120 SINSSIINES
onInivedd W84 AU 91
wes 4 330 81 WG
Uy SeVeTe®
' ety
ot

Cal

6;
(3
)

CraEr—4

=

24
..4.-
0
0
83403 ° 624820 :
avnvad
14

——

T

0

T ey]

(e Lilion]

ccﬁivlﬁf}'-—
i D)

A gme menoRIES
B ANE ABOVE ALLECATION
L# ‘ Ly

A’NI. CACH NENPEY J ABOVE ABSSLUTE LINY
. saﬁamtmi—-]

O s

J00un-nnBTae)
e ur—‘ e
A agnane ngnoniee .m uo AL 107 A naxe
wHICY ARE LESS un

THAN OR TBUAL SOAL

[Fzl ©
JJ)‘———@

QD '.":.":::“!5 '
l] " vaane:

Ayen eacn menway
— " LoV Ivs

Qf) soAL Levet
e 17 17 cam ot
ALLOCAIED SoMe or
Mm's sLocks
—. L J ll.rTn A
Il 1 e s _"
CRAsEpnesI (i)

aage l’
i,]
() e]

T TeaLLecat ion
X631

&b

[2

Figure 7. Memory allocation balance heuristic.

1 Ay L Ak el L S A i e Lt ot B A R

R
“e, .‘f‘y‘.',.,*.,
P

(2 30 2 399yS) O13SL4ndY doue|BQ LOLIRIO) | AJoWway °/ d4nb} 4

(i) et 7

M M)
@ & ~C¥ uﬁ _)
DMA—WW_ W .lﬂ"‘dﬂ -‘MYIN- ues [F1¢ "1 '} '-”ﬂbm%” was l'ﬁ.lﬁ w33 .-..-”*J
| |“.-MM v 7 ‘Ha%lm‘_ .mﬂ-n.-l'...l&”..ﬁoa- [
[===z b hhwg e |
(1) 4 S48 O IaM — .
a1 L _Um.x...h..mwmm_ CFC D o~ — —— ,.r
__ _.,.“..m."_Ttl?l., o 5 : X

e) v
al : Y
Not srssiss serggu —ary >
s oy) @ - s

(D

VUMY paege my Teagfaeem gupany atemy

0-21 “ﬁ
= sveinn divaeny ﬂHm..—mHm-u
1. N X
L 1]
-—

WTLREE, MW

R e R O P i o SRR R

91351403y 3500 JuUBWAO(3A3p AdNPaY °8 aunbi 4

W)
__m282
1817 39NVHI
NSVL LUISNI
s262vd
8262
% w
ed . sde ‘ PR RTITITT)
1321918804 231018804 1809 !
| @ a3zsnnaax SN0 3N ISOHOH a35na38 N
A, c26c2vd c262vd 1262V 4.\
_ €262 r262 1262
1. i
ZSNOINIB0FIL N 290VHD
4. z262vd ASV1
_ . z282 8832044
2ASVL SIHL sESZvd
W03 GINSISSV Sc62
¥OSS$3D3038d 3IND 3 \
NvHL 3d0n s1 g (1 "19° (3)dIaVL y———
21800 vm
03114dNS ¥3ISN 3.
NVYH1 €837 1$02 4
1N3INLOTVIA3A ﬁ (3)80avi) | (1N o1 s
031010334 S1 ¢y 31 _(visdava J 4 1 1 4es) oafl—o
L] . - - L]
| X3aNT ...H
} ASVL HOLId ¢ [C_«nri1oavisy e CRRND

AR N i e 2 b Ut b,

. For each of the heuristics, checks are incorporated to ensure
that real-time limitations are not violated by any subsequent new
"improved" solutions found by the respective heuristic. Design emphasis
was placed on the order for incorporating these checks within the heu-
ristic procedure to avoid excessive calculations when easily determined
restrictions would prohibit exploring a given tradeoff. For example,
when attempting to reallocate a task to another processor, only those
processors that may perform the task are considered. To solve some of
the more complex interrelated real-time constraints, a linear program
statement might be studied to determine whether effective utilization of
an optimizer would be feasible for performing the given tradeoff. The
current algorithm incorporates a specific check of constraints as formu-
lated in Sections 3.1.5 and 3.1.6,

The heuristic driver continues at each priority level until it
has exhausted its systematic exchange tradeoff search for an improved
measurement. The three priority levels are executed in the order as
specified by the user evaluation priority inputs of PASSl. The basic
computational and logical sequence flows for each of the three priority
levels are denoted in Figures 6, 7, and 8, respectively.

3.2.3 Augmented Partitioning Algorithm (PASS3)

This step is an expansion of the PASS2 processes with emphasis on
resolving identified performance bottlenecks of the following types:

l. Cycle or thread timing is not sufficient for real-time
system response.

2. Specific candidate component (i.e., processor, memory, com-
munication link) utilization is unacceptable.

The basic process decision flow is depicted in Figure 9.

Recognizing that manual user evaluation insight may help expe-
dite the search for an improved partitioning, process PA 3100 facili-
tates the option that the current allocation can be manually modified.
Once any modifications have been processed, the performance data are
processed via PA 3200 to readjust coefficients and to set up additional
constraint generation controls. The new constraints are then con-
structed and their basic impact on the current partition is assessed in
terms of solution feasibility. Each performance bottleneck is processed
individually, in a predetermined order of criticality during this pro-
cess (PA 3300).

If a cycle or thread is the bottleneck, then the respective re-
source management and data communication links are examined to determine
the major bottleneck within the thread or cycle. Penalty coefficient

*MOlJ wyjtJobie Butuoryiysed pajuswbny g aunby 4

ESSVd
/ssc

d3IAT¥G
O11818N3H OILNIHINY

S¥313UVavd
J21SV@ 1SNrav

183N03IY NNY NOVaaiilai
NOILIVINVE §83D03d

Nan1 3

sgcevd

[] [~
[

s82¢cvd
s8zE

asievd
8glEe

47

ad justments are made to the processor utilization equation. An alter-
nate partition is sought that satisfies the end-to-end time requirement
of the given cycle or thread under these more stringent constraints.

If a component is above its allotted utilization, a check as to
processor or memory balance bottleneck is made. If it is a processor,
the processor heuristic is used to offload the offending processor. If
it is a memory problem, an attempt is made to find a faster access memory
or add a duplicate block if shared memory access is the bottleneck.

As the processing of bottlenecks is performed, the augmented
heuristic driver invokes PASS2 partitioning modules interspersed with
additional checks for maintaining the appropriate thread and/or cycle
constraints. If a new partition is found to be acceptable, it is saved
for feedback to the performance simulation and further manual analysis.
1f not, the problems are identified for user evaluation. Appendix D
contains the detailed design flows necessary to fully enumerate the
algorithm. Additional changes are anticipated as the details of the
performance simulator design are enumerated under Contract No. F33615-
79-C-0003.

3.2.4 Solution Summary Reports (PASS4)

The report generation features of PASS4 are designed to provide
printed summaries of a partition found by either PASS2 or PASS3 for a
given candidate configuration. The specific formats chosen present the
partition solution from five complementary, but different, aspects,
including (a) partitioning priority level measurements, (b) task alloca-
tions, (c) data block allocations, (d) processor allocations, (e) memory
allocations.

Figure 10 reflects a modular design flow based on user requests
for any of the reports for a given partition j of candidate configuration
i. This particular report generation capability should be implemented
for access from batch job control, special user codes, as well as inter-
active displays to obtain maximum evaluation flexibility to automati-
cally recall and/or print alternative partition solutions for a given
candidate.

Specific output report formats are presented in Appendix B. The
design demonstration, Appendix C, has sample output reports for user
reference.

3.3 FEASIBILITY DEMONSTRATION

In deriving a meaningful, yet simple, sample problem, specific
preliminary design material was obtained from Williams AFB with regard
to an ongoing expanded design for the Advanced Simulation for Pilot
Training multiple processor visual computational support subsystem. The

48

G TR

s '1‘ T ———

T Tt SR

2,

P o=

PR T o . WL s e s

*ubLsap 40j3eaauab juoday Q1 3unbi4

L]

e } D) o D\ ol TN oL 1N\
[woii I Voo NOTL Luvains
-v301V -v201V iid -v201V 1vos
ANOH3IY 40SS2AD0ud AEV4 ALINOL NS
—* viva
S s € Mﬂ%/
\fﬁ. Va '
\” Ay NV
\HMMHIIWW.
T a1iva
T TS (1 uau F12TER
wOew1g W Gus T ye—— | WU (NI VAV tax 403)
et anza|[* 2. ool a.
A _ asz 1
GIVANT
L] - .
¥3q¥o
aaNT 430384
NI g
suzsy |] N\
TANOHIW. s (EI Ve
.D03d. s (VI BVY
40
: VIVO. s (€)dUvd o1~ TV, s (1083 wﬂuuuuw-"nuccth
: (SASVL. s (2)8aVd :
.SIV09d. ¢ (1) 24Vd e
. Casd

I ®3IDPIPUDD jO [uGij 1808 J0)
4333 S180438 03183IN0AY ALVEINISD 7

i o - oA

preliminary design material provided a realistic source of the format
for ongoing trainer computational design input. It also included a mix of
general-purpose and special-purpose processors. The information in this
memorandum provided a good base for generating a sample problem; how-
ever, the resulting sample problem required simplification of the con-
figuration described to permit a flexible, yet easy-to-follow, manual
demonstration problem to be obtained.

The design factors in the original problem were very restrictive
as to Central Processing Unit (CPU) task assignments and thus left very
little room for alternative partitioning. This reinforces the fact
that, in software design, tasks tend to be defined in terms of the
selected hardware configuration features to meet computational needs, as
opposed to specifying application computations and then matching tasks
to the hardware selection. For the partitioning algorithm to be applica-
ble to alternative allocations and partitions, the major feasibility
issue concerns design language and means for inputting the problem
definition from which the partitioning model is to operate. These issues
are discussed in Section 4.

For demonstration purposes, overview inputs, restrictive inputs,
and detailed inputs have been incorporated to illustrate various aspects
and paths of the partitioning process and to point out the tradeoffs in
utilization of detailed inputs versus general estimates. The complete
algorithm feasibility demonstration is included as Appendix C to this
report. The basic order is the sample problem definition, user input
sheets, user input echo summary, basic partiticuing priority calcula-
tions, sample performance feedback contingcncies, and solution summary
outputs.

Figures 11 through 13 illustrate the major partitioning compon-
ents as extracted and simplified from a set of Williams AFB ASPT prelimi-
nary design notes for the visual subsystem. The overall processor con-
figuration is denoted in Figure 11. The memory and external communica-
tions are illustrated in Figure 12 to include both private and shared
memory devices. It also includes processor-to-processor direct data
transfer. Figure 13 denotes the simplified task flow used for demon-
strating the input and output steps of the algorithm. The tasks of
Figure 13 may be further divided into more detailed tasks for demonstrat-
ing and testing specific features of the partitioning algorithm, once an
automated version of the algorithm is implemented.

The sample demonstration (delineated in Appendix C) permits the
definition of potential automated implementation processes for handling
real-world partitioning problems. The examples demonstrate the feasi-
bility of an automated tool. Section 4 provides recommended implementa-
tion steps for verifying and validating the partitioning tool. These
steps will require that the basic algorithm be automated to properly
evaluate and demonstrate its performance characteristics for more rea-
listic partitioning problems that tend to be of larger size than the

50

ST S Y

N

R Y

ST i, i N b5, . o ot T K i 3 i, e e A o

*uoLjeanbLjuod wajqoud 3 dwes I 34nbiL 4

SAVIJSIO
IVASIA

14WVX3 NOILILYVY 18010 [u3gvay

. S, — _ auvd

(2dS)
H3ILNdWOD 3S04uNd TVIIIdS

u3LNIEd
a4 ann
ViN 81N
] o—————— —_——
3108800 || coi3 “ 3AG
¥ 3dvi
L | ovN -
) TOI1I3 swmm | 08 138 wn
, e
h .. o |
v ! r STYNINYIL
210SN0D “ “ DNIMVHS 3WIL
[Rooemrbvorstormeibomiin oM “
" I
syTE V3S syzetas !} | swzeas SU/TE 138
| @ v i AN3 HILSVIN
| il
| il
b ot §
- ._ 28510 !
w HILNIWOD aw 00t 8

WaLSASENS (¢~
vorvinwis | | von -
i

*SUOLIRILUNWWOD 40SS3004d AJowaw uot3eAnbL uod 3(dwes 21 3unby 4

yosszoous [|

18 ™
AYOWIW 3LVAING _H_ o
AYOW3IW G3HVHS @

91N 0L — — —
901l———

52

g.ﬁ

U3ASYNW OL

Z-0i13

1—013

e y—— I ;
& oL I P ety M, o LU Vg . ., .)
et L ok W B W s o LA

*Mo|j uotjediiddy €Y aunbig

1dIVD
FQV LOVdWI 311410 V1VANAQ
»—{| 3dvuis/awos Jovd 1S11dOOW
SIINYNAQ QOOH @ raov
aLBYL 3
S3JIULYW
INISOD TINNVHD 93S/0€
3Lvadn NOILYINDTVD 14NYYILNI
8 11d3202 IVNOILIO 10V INAS INVHI
viva oy
JINVNAQ €129 :
3YVdIIYd .ﬁa«w&:@.ﬁ
NOILI3YH
s v Ao AlA«V 1SNFQY ANV
d 01LVI0T 11d¥I0D
el
€LY
LIHOIYd 13
aing B 193
3IAILOV aINg
|LHD17 ONDINITE oMMV

eL-Ll

’_ NN ORS8N e QTR TR O Y M TR D% LR R Gt e s e

manual demonstration examples. The manual examples will permit the '
basic logic to be verified for a controlled, small-scale application

prior to "cranking out" large-scale partitioning problems. This will

permit an initial level of confidence to be established in the automated

version.

4. MODEL IMPLEMENTATION CONSIDERATIONS

To successfully implement the software partitioning algorithm,
an up-to-date technology data base for the flight training simulator
computational devices is essential. This section delineates the data
collection process and decision steps recommended for potential automa-
tion and quality control of the algorithm defined in Section 3. This
section has been organized to go from an overview of the candidate design
evaluation environment into a detailed evaluation support data base
repogitory description, followed by computer selection criteria and the
recommended implementation schedule for automation of the software
partitioning evaluation algorithm.

4.1 FLIGHT TRAINING SIMULATOR EVALUATION ENVIRONMENT

Typically, the development of flight training simulator candi-
date designs for the Air Force are contracted out by the Simulation
System Program Office (ASD-SD24). The computational subsystem design
development is monitored and evaluated by the Deputy of Engineering
Simulation (ASD-EN). 1In some cases, the flight trainer development is
directly contracted by a specific system office (such as in the case of
the F-16 trainer). Currently, the contracted organization has the pri-
mary responsibility for establishing both hardware and software require-
ments of the computational system, subject to certain Air Force guide-
lines and training capability objectives. The candidate design evolves
through an iterative refinement of documentation and algorithm enumera-
tion analysis, which typically progresses from system specification
functional flows followed by the detailed enumeration of the candidate
design. Each of these levels has narrative descriptions interspersed
with a variety of technical charts, drawings, tables, flow diagrams,
interface definitions, etc.; however, as denoted in Figure 14, the
volume of documentation for a training simulator quickly becomes
unwieldy unless documentation traceability and content standards are
adhered to and enforced via constructive reviews, which are geared to
detecting and correcting errors early in the development phase.

This effort has specifically addreased the software partitioning
aspects of candidate design evaluation. The three major outputs of the
partitioning algorithm are measures of the processing load balance,
memory utilization, and estimated development implementation cost based
on given timing and sizing input requirements of the respective tasks and
data load for a given candidate configuration. For effective use of the
software partitioning algorithm, the underlying mathematical model of
Section 3.1 must be understood in terms of the processor utilization,
memory utilization, and development cost formulations, which are the
primary outputs.

I T kS T

TRAINER SYSTEM SPEC

o POSITIONS |
o CONFIGURATIONS
¢ COORDINATION - CONTROLS

SUBSYSTEM INTERFACE SPECS

o COMMUNICATION PRIORITIES
o DATA FREQUENCY AND FORMATS
¢ FUNCTIONAL DESCRIPTIONS

SUBSYSTEM DESIGN DOCUMENTS

CREW POSITION - AIRCRAFT - INSTRUMENTATION
CONTROLS - SWITCHES - ELECTRONICS
HYDRAULICS - WEAPON SYSTEMS - DISPLAYS
AUDIO - VISUAL - MOTION - FORCE - NAVIGATION
TERRAIN - INSTRUCTIONAL OPERATIONS - SCORING
COMPUTATIONAL

Figure 14. Hierarchy of flight trainer documents, which relates to candi-
date design evaluation, can quickly become unwieldy if content
and traceability standards are not adhered to or enforced.
The simulator computational subsystem interfaces with and
coordinates a large number of the trainer simulator sub-
systems,

e

56

L SV

To obtain reliable outputs, a consistent, systematic procedure
needs to be established with appropriate configuration management and
quality assurance provisions and controls. The major implementation
consideration for such a procedure is the establishment of a consistent
data repository for pertinent flight trainer computational design data.
No central repository for Air Force flight trainer computational designs
currently exists, although various organizations (such as ASD-EN) do
have their own evaluation data repositories.

During the course of this contract, it was learned that the Naval
Training Equipment Center (NTEC) in Orlando, Florida, does have a
repository of all documentation associated with Navy training devices to
include the computational subsystem, NTEC recently modified the
required Data Item Descriptions related to the computational subsystem
to be an integral part of training device development in conjunction with
a proposed Appendix A to the trainer specification, MIL-STD-1644,
entitled "Trainer Software Design, Control, Production Testing and
Acceptance Procedures and Requirements." This proposed specification
incorporates the top-down structured design approach with minimum stand-
ards that are required of each milestone document and its associated
review content, error detection/correction actions, and milestone com-
pleteness determination. The procedures are in basic agreement with the
development cycle presented in Section 2.1. This set of documents per—
mits a consistent repository to be established and maintained for cur-
rent reference and analysis input for new development considerations.
Unfortunately, it is still primarily a manual information storage and
retrieval system when it comes to accessing data pertinent to software
partitioning.

The factors identified in Section 3.1 that influence optimal
software allocation (such as: data block, task, processor, and memory
descriptions) remain the same regardless of the system assumptions or
presentation format., Indeed, these factors (Table 4) must typically be
extracted from more than one document to obtain the complete set of input
and constraint parameters defined in the mathematical statement of
Section 3.1. To assist in the review of documents with respect to
software partitioning of the computational subsystem, the supporting
data base parameters have been segmented into five major areas with
respect to flight trainer simulator:

1. Trainer Computational Interface Requirements
2. Baseline Application Components
3. Candidate Hardware Configuration Components

4. Technology Data Base
S. Evaluation Criteria/Constraints and Partitioning Load.

Figure 15 reflects the interactive nature of these data base areas with
respect to technology capabilities and the development cycle up through
the completion of the design but prior to actual implementation and test-
ing. The upper area relates to milestone documents of the training

ST

e o

R = ST T P p——rey

e s e I PR > AN P P P

TABLE 4. DEVELOPMENT DOCUMENTS AND THEIR
RELATIONSHIP TO THE PARTITIONING
ALGORITHM FOR SOFTWARE SYSTEMS

DOCUMENT(S)

INPUT AREA

Computational Subsystem
Interface Specification

Software Design and
Data Base Specifications

Hardware Configuration
Design Specifications

External Device Interfaces

Required Components
Functional 1/0 Map

Communication Rules
and Priorities

Baseline Load(s)

Data Block Descriptions
Task Descriptions

Task Threads

Baseline Load(s) Tasking

Processors
Memor ies

Interfaces (Internal and
External)

Communication Rules

- S A T

OTM=INLNDCY IMI <O

SPECIFIC TRAINER DEVELOPMENT

CANDIDATE
SOFTWARE &
HARDWARE
SPECIFICATIONS

COMPUTATIONAL
INTERFACE &
FUNCTIONAL
REQUIREMENTS

COMPUTATIONAL
CANDIDATE
DESIGN
PARTITIONING &
EVALUATION

— — v —— — — —

MEMORIES
PROCESSORS,

& COMMUNICATION
DEVICE
INTERFACES

TRAINING,
INSTRUCTOR,
& OPERATION
DEVICE
INTERFACES

TECHNOLOGY CAPABILITY

ATMNLDCH R ZO==Pp=~iICTTOO

Figure 15.

Computational design evaluation must relate a specific design
fn terms of current technology capabilities for both external
comiunications and internal computational subsystem details.

59

computational interface requirements, software design, and hardware
design respectively. The lower half represents the technology data
base, which permits an sbbreviated means for entering the design details
on which the partitioning algorithm is to operate. The left half relates
the devices to be serviced by the computational subsystem, and the right
half reflects the internal computational subsystem structure organiza-
tion and devices.

Although the data are extracted from independent sources, it re-
quires interactive coordination and configuration controls to ensure
that accurate, up-to-date, best estimates are utilized for the evalua-
tion at hand. The evaluation criteria and constraint inputs facilitate
configuration controls, parametric analysis, and partitioning flexi-
bility with respect to prohibited and/or preassigned allocations in
addition to initial allocations. The details of this segmented data base
are nov described in terms of implementation considerations.

4.2 DATA BASE MANAGEMENT

Two major recommendations are being made to facilitate orderly
consolidation of the storage and retrieval for each of the five data base
areas that provide the driving source of information for the partition-
ing algorithm and candidate design evaluation process. These recom-
mendations are as follows:

1. The addition of a standard set of candidate design specifi-
cation tables that address the software and hardware designs
as independent sets of parametric measures.

2. The establishment of a design evaluation data base reposi-
tory utilizing an interactive file management system under
the configuration control of ASD/ENETC.

This subsection supplies key factors that should be evaluated and modi-
fied as necessary to facilitate an orderly tramsition to an automated
algorithm implementation as presented in Section 4.4. Proper utiliza-
tion will require a training indoctrination as to the potential benefits
to both the flight trainer developer and evaluator communities. Before
the recommended input forms are described, several master data struc-
tures are delineated that have a direct influence on validity of data
entries and provide the key to independent software and hardware design
characterization.

4.2.1 Master Data Structures

These master structures include (a) data block characterization,
(b) memory characterization, (c) task characterization, and (d) proces-
sor characterization.

pperen—cuwprm————tr T LD T

Combinations of these structures are incorporated into the
recommended forms for each of the five data base input areas presented in
Appendix A. v

4.2.1.1 Data Block Characterization - Data characteristics such
as source, volume, frequency, content, and destination are the real-time ‘
drivers of the computational subsystem from both external device and in- 2
ternal tagsk communications, command, and control. Table 5 denotes at- ¥
tributes required by the software partitioning algorithm for each data
‘ block that is acted upon or created by the computational subsystems being
partitioned. Note that these attributes do not tie the data block to a
' specific storage device. Only external system blocks are identified as
being related to a given type of peripheral interface; for example, a
cockpit control setting input buffer block has a definite source device
that must be wmonitored at a predetermined sample rate. On the other
hand, the data to be computed by one task and used by a sequentially
dependent task are described in terms of minimum storage device require-
ments for their storage and retrieval utilization. These master block
definitions are then referenced by the block identification when refer-
enced in the task descriptions (Section 4.2.1.2) or in evaluation allo-
cation restrictions (Section 4.2.3).

4.2.1.2 Memory Characterization -~ A wide variety of memories

may be incorporated into a candidate design configuration for a flight

trainer. For purposes of partitioning, memories are categorized (as de-

noted in Table 6) to include read-only memory (ROM), writable control

stores (WCS), main random access memory (RAM), rotating random access

mem ory (RRAM), and sequential memories (SM). Within each of these

categories are additional retrieval and storage characteristics for data

representations of addressable units. These representations permit the

‘ generic data block parameters of Section 4.2.1.1 to be matched with

{ appropriate memory devices in the candidate configuration for which
partitioning is being performed.

4,2,1.3 Task Characterization - Specification of task attri-

i butes, which are independent of the processing hardware, poses a very
L4 challenging problem area for incorporating the traditional hardware-

f dependent design customs and notations that have evolved not only in
flight training simulator design but computational system designs in
general. At this point in software design history, several emerging
philosophies for design standards seem to be contradictory concerning
the level of specification and the documentation language used to convey
the detailed software algorithms to be implemented. At one extreme is b
the use of English-like structured pseudo code, which is favored for its
features of being easy to follow and comprehend. On the other hand,
there is an emphasis for precise, unambiguous mathematically enumerated
representations that provide the specific computations but, if not
annotated with English descriptions, they become very hard to follow,
except for persons who are very familiar with the specifics of the
algorithm. Most designs are generally a mixture of these two approaches,

TABLE 5. DATA BLOCK CHARACTERIZATION
ATTRIBUTE VALUES UNIT/MEANING
Identifier 6-Character Provides a unique identifier
Mnemon ic for cross-reference and
labeling purposes
Level 1 Character
= '§ System Interface
= G’ Global {used by more than
one task)
= 'L Local to one task but must
be saved
= T Temporary scratch area for
a given task
Discipline 4-Character Code Provides basic [/0 requirement
for determining suitable
memory device allocation
= 'FIFQ! Queue
= 'LIFO’ Stack
= 'SEQ' Sequent ial
= ‘RAN' Random
= 'ROR* Ready-Only Random
= “ROS! Ready-Only Sequential
= 'CBUF' Circular Buffer
Sizing
o Maximum Records Positive Integer Records
o Bits/Charac- Positive Integer Bits
ter
¢ Characters/Word Positive Integer Bytes
o Average Words/ Positive Integer Words
Record
o Maximum Words/ Positive Integer Words
Record
o Minimum Words/ Positive Integer Words
Record

L R e T MRS . T) ST

TABLE 6.

MEMORY DEVICE CHARACTERIZATION

ATTRIBUTE VALUES UNIT/MEANING
Identifier 10-Character Provides a unique identification
Mnemon ic for each memory device in the
technology data base for which
the following attributes define
Type 4 Characters
= '‘ROM' Read Only Memory
a 'RAMM! Random Access Main Memory
= ‘RRAM' Rotating Random Access Memory
= 'SM' Sequential Memory
= 'WCS’ Writable Control Store

Size in Bits

¢ Minimum
o Maximum
o Increments

Number of
Different
Addressable Units

For Each
Addressable Unit

o Leve!

e Bits/Unit
Level

¢ Read Access
Time

o Read Cycle
Time Unit

® Maximum
Sequential
Units Trans-
ferred for
Single Read

o Write Access
Time

Positive Integer
Positive Integer
Positive Integer

Positive Integer

4-Character Code
= '3IT!

= '68B'

= 'g68"'

= 'WORD'
Positive Integer
Real

Real

Positive Integer

Real

Bits
Bits
Bits

Bit Addressable

6-Bit Byte Addressable
8-Bit Byte Addressable
word Addressabie

Exclusive of Parity or Error
Deletion Correction Bits
Nanoseconds

Nanoseconds

Same as Unit Level

Nanoseconds

T

R it R e

TABLE 6. MEMORY DEVICE CHARACTERIZATION (Sheet 2 of 2)

ATTRIBUTE VALUES UNI T/MEANING
e Write Cycle Real Nanoseconds
Time/Unit
o Maximum Positive Integer Same as Unit Level
Sequential
Units for
Single Write
Access
Error Detection/ | 6-Character Code
Correction = "PARITY Parity Bit
= 'SECOED’ Single 8+t Error Correction
Double Bit Error Detection
Number of Sup- Positive Integer
pliers for Each
Supplier
o ldentifier 10 Characters Unique Identifier
o MTBF Real Hours - Mean Time Between
Failures
o MTTR Real Hours - Mean Time to Repair
e MSPM Real Hours - Rescheduled Preventive
Maintenance
o MTPM Real Hours - Mean Time fur Preven-

tive Maintenance

T, R S e A R T

o 1 OB A e A T o

which facilitates the overall functional flow, high-level presentation
and permits a traceability structure for enumeration of detailed design
computations and decision logic.

The remaining problem area of design specification relates to
the specific notation. Certain aspects of flight trainer computational
algorithms have become well-defined, i.e., aircraft flight kinematics.
These algorithms are generally used for making benchmarks on new candi-
date processors. Thus, for well-established algorithms, a master set of
simulation task benchmarks can be established for each candidate proces-
sor being considered. New algorithms require a more fundamental break-
out of the instruction mix to ascertain timing and sizing elements. In
summary, a master set of software task attributes are presented in
Table 7. The establishment of a master instruction mix, task 1/0
descriptors, and task enablement features is recommended as one of the
steps (Section 4.4) toward algorithm implementation. Related to this
master instruction mix is the development language for task code genera-
tion. Recent trends in simulator coding have incorporated FORTRAN code
for the scientific mathematical application models, but there is still a
strong dependence on the assembly level code for expressing real-time
executive and I/0 handler modules to meet the real~time timing require-
ments. The selection of a task design instruction mix notation should be
coordinated with the simulation high-order language efforts and proces-
sor instruction architectures.

One way to obtain this information would be the use of a graphi-
cal task flow representation, which included a standard design notation
to indicate the imnstruction sequences, loops, and relationships with
1/0. A flow notation, such as TBE's Input/Output Relationships and
Timing Diagrams, can be automatically traversed with the instruction mix
and 1/0 features being identified and reformatted for use with the parti-
tioning algorithm. This would require that a standard flight trainer
computational design language and flow representations be established,
thus providing a standardized way for documenting the detailed task
computational designs.

An important note is made here regarding the traditional means
of expressing task sizing and timing in terms of adds, multiplies,
branches, etc. The instruction mix need not be at the machine level.
Instead, it should reflect a set of simulation macros, such as single
variable linear table interpolation, and trigonometric functions. Each
of these, in turn, is characterized for each candidate processor as to
timing and sizing. If the simulation macro has been implemented in
firmware or as part of a mathematical package, the sizing is reduced in
terms of the main instruction storage for the task.

4.2.1.4 Processor Characterization - Processor technology is
constantly expanding in terms of operating system and instruction set
capabilities. Table 8 lists processor attributes that pertain directly
to the software partitioning algorithm. The operating system features

65

TABLE 7. TASK CHARACTERIZATION
ATTRIBUTE VALUES UNIT/MEAINING
ldentifier 6-Character Provides a unique identifier
Mnemonic for cross-reference and

Source Language

Instruction Mix
for Each Instruction
Type:

o Instruction Iden-
tifier
e Sizing Count

o Execution Count
Average
Worst Case

Data Retrieval for
rEach Task Input

¢ B8lock Identifier
When

¢ Average Input
¢ Minimum Input

o Maximum Input

10-Character
Code

10-Character
Code

Positive Integer

Positive Integer
Positive [nteger

6 Characters
6-Character Code
= 'START'

= 'ALONG'

Positive Integer

Non-Negative
Integer

Positive Integer

labeling purposes

Must match entry in the
master source language

1ist maintained for current
processor technology

Must match entry in master
simulator instruction mix
identifiers

Number of times this instruc-
tion appears in code

Number of instruction inter-
actions considering looping
conditions for average and
worst-case logic

See Table §

All recérds read at first
of task before main proces-
sing

Records processed one at

a time

Records
Records

Records

TABLE 7. TASK CHARACTERIZATION (Sheet 2 of 2)
ATTRIBUTE VALUES UNIT/MEANING
Data Storage for Each
Task Output:

e Block Level 1 Character See Table 5
e Block Identifier 6 Characters See Table 5

¢ When

o Average Output
® Minimum Qutput

¢ Maximum Output

Enablement
o Type

e Frequency 1
o Frequency 2

e Frequency 3

6-Character Code
= 'ALONG'

= 'END'

Positive Integer

Non-Negative
Integer
Positive Integer

4-Character Code

= 'TIME'
- lmrkl
= ‘'SLVD*
= 'TAD'

Real
Real

Real

Records are output via indi-
vidual processing

Records are output just prior
to task exit

Records
Records

Records

Time Enabled
Data Enabled
Slaved to Master Task
Time and/or Data Enabled

[terations/Second for Time
Enablement

[terations/Second for Data
Enablement

Iterations/Second for Slaved

TABLE 8.

PROCESSOR CHARACTERIZATION

ATTRIBUTE

VALUES

UNIT/MEANING

Identifier

Operating System
e Multitasking
A lLevels

& Number of
Priority Levels

o Enablements

A Maximum Time
Enablement
Frequency

A Resource
Management per
Time Enablement

A Maxirum Data
Enablement
Frequency

A Resource
Management per
Data Enablement

A Maximum Slaved
Enablement
frequency

& Resource
Management per
Slaved Enable-
ment

10 Characters

Integer
.GE.1

Integer
LE Levels

Integer

F1¢.9.6E.9
Integer
F19.9.GE.9
integer

F19.9.GE.9

Unique identifier for pro-
cessor with the following
attributes

These many levels are ser-
viced in a priority fash-
ion, The remaining levels
are serviced in a circular
time-shared fashion.

Enablements/Second

Micrcseconds

Enablements/Second

Microsecond

Enablements/Second

Microseconds

L .
!
b
: TABLE 8, PROCESSOR CHARACTERIZATION (Sheet 2 of 3)
ATTRIBUTE VALUES UNIT/MEANING
P e For Each Task
3 Level L
: A Maximum Number Integer .GE.1
of Task Level L
ATask Service Code
Scheme for
. Level L
k- ' ap Priority
1 : s 'C* Circular
3 = ‘F! First-in, Fir.t Out
o Level Resource f19.9 .GE.0 Microseconds
Management
Simulation Instruction
Set Measurements for
Each Benchmark

Instryction 1

e Sizing
Measurements

A Nymber of Code
Memories
Involved -

The Memory Type for 4-Character Code Must agree with master
Each Code Memory m memory types defined in
(the first memory is Group 4

the user task code --
any other memories are
predefined for this

processor)
4 Length of Code Integer .GE.l Number of basic units used
in Memory m to describe memory m (see

\

Group 4)

covm— s

o tim s

2 acd

TABLE 8. PROCESSOR CHARACTERIZATION (Sheet 3 of 3)

ATTRIBUTE

VALUES

UNIT/MEANING

¢ Timing Measurements
for Each Code
Memory m and k=1,2

A Number of Scratch
Data Store Waits

A Number of Scratch
Data Store Waits

A Computational
Total for ANl
Memor ies

o Application Develop-
ment Measurements
Using Language L of
the Master Language
List

A One Item Develop-
ment Charge

A Change per Appli-

cation Instruction
of this Type

Integer .GE.O
Integer .GE.#

Integer .GE.Q

Integer

Integer

k=] Implies Average
k=2 Implies Worst Case

Cycles

Man-hours

Man-hours

applicable to software partitioning relate to multitasking disciplines,
limits, and resource management services. The instruction set is
{ ’ characterized in terms of the master simulation instruction set as
described in Section 4.2.1.3, along with attributes for user memory 1/0
versus preprogrammed resources plus development cost estimates.

4.2.2 Suggested Input Forms

The forms, as designed, may be used directly by a data keying
operator to produce keypunched cards or entry directly onto a file via an
interactive data entry terminal. Specific physical file formats are not
specified since they will be a function of selected computer file image
capabilities described in Section 4.3. Because of the volume of input
sheets, they are presented in Appendix A for each of the data base files.

During the design of the input forms, emphasis was placed on
consolidation and cross-reference techniques that facilitate an organ-
ized straightforward user input interface. The software partitioning
algorithm requires an assortment of specific data to fully define
trainer system interfaces plus computational hardware and software
design details that must be accurate if a good partition allocation is to
be obtained. The separation of forms is based on the five major input
areas, and it is recommended that these areas be standardized for pre-
senting the respective interface requirements, software task/data design
relationships, candidate hardware design configuration, technology capa-
bilities, and evaluation priorities, including the candidate initial
design allocation as a starting point for partitioning optimization.

4.3 TARGET COMPUTER AND SOURCE LANGUAGE SELECTION

The selection of the computer system for the partitioning algo-
rithm should consider, as & minimum, the following features, which must
be incorporated to facilitate automatic implementation of the partition-
ing algorithm and its potential expansions:

1. Data base management system

2. Structured program language

3. Modified linear mixed integer program optimizer
4. Computational speed and accuracy.

Each of these features is described in more detail in the follow-
ing paragraphs.

4.3.1 Data Base Management System

; The interrelated, yet separate, data files (described earlier in
| this section) of the recommended flight trainer automated repository are
i best implemented under a standard data base management system that

permits creation, update maintenance, and configuration management of
all data and program files. It is recommended that system data file
management utilities be available to the user in several different
modes, including batch job control, interactive terminal commands, and
user program code directives to permit a flexible, yet controlled, data
access enviromment. Direct record access capsbility is an essential
feature for implementation of the software task and block description
plus the technology data base files.

The amount of data is a function of the flight training simulator
computational candidate designs to be evaluated. Table 9 provides an
abbreviated summary of sizing relationships for each record type group
contained in the respective files required for the partitioning algo-
rithm. The data base management should include memory management of code
and data required for execution. Internal tables utilized by the algo-
rithm are sized in Table 10. The algorithm code is estimated to be
10,000 lines of structured FORTRAN exclusive of potential data manager
and optimizer extensions.

4.3.2 Structured Program Language

Evaluation code (code used to facilitate manual analysis) is a
very useful tool if it can be maintained under configuration control and
permit expansion to wmore detailed models when necessary for a given
evalustion analysis. Structured source code facilitates modulsrity and,
thus, permits model expansion. Several source languages are included
here as candidates for the partitioning algorithm implementation,
including FORTRAN 77, JOVIAL, and ADA., These languages were selected
based on current DOD-approved languages and language development activi-
ties. Pros and cons for each are now presented.

The widespread recognition of FORTRAN for scientific and mathe-
matical programming makes it the preferred language of the three lan-
guages considered. The newest ANSI FORTRAN 77 standards incorporate
character manipulation, which is independent of machine architecture.
Its use of structured logic includes both true and false process defini-
tions without the use of extraneous "GO0 TO's.” File manipulation capa-
bilities have also been expanded to include file status checks and
standardization of certain types of data storage/retrieval mechanisms
that have previously required vendor-peculiar FORTRAN extensions. Some
problems may be encountered with new compilers being released to meet the
new FORTRAN standards, but these cowpilers should evolve rather quickly
to support most of the ANSI 77 features. This will result in code that
is wore easily transported from one machine to another. This is an
important aspect, since the partitioning algorithm does not require a
dedicated computer system, and as such, it is envisioned as being a
useful tool for flight training simulator developers and maintenance
reconfiguration analysts, as well as for Air Force evaluators. Each of
these specialists generally has his own in-house computer system
tailored for specific analysis needs.

peoy/asey/pae)
peoy 434 pJe)

J3pRay Prol | JUOLILULIIQ pROT y|3seq ’
ULy 30019
asey J4od pae) |
uot3iuL4aq XN
uo1313N4ISU]
sd pse) 1
pae) Japedy | Uoj34uL a0 ysey €
aua_ﬂ St 43u3
4od pse) 17| suotituijlag xdolg e3eg 2 paeogha)
J0 pav)
un|03-08 SJU0dec)
sa3d0aRY) 02 01 ¥sei/qor aJ4emy oS 1 e) uanbag voL3ed) (ddy auy|Iseg z
12014 (493409 a0)
Jd pae) | 019 °IvQ WASAS €
991A30 J2d
SpJe) € 0) 1 | 301A3Q d0v3497u] WASAS Z pavogLay
40 paR)
uwng 0)-08 SV LNDIY 3dejsa3u]
$431Iv40y) 02 01 3113 1 1®1uanbag 12U01 10 INdWO) 4301 eAY 1
s Jun dNowo 3L NN 1401
0¥l3Y eI
SINIWIYIND3Y ONIZIS 3114 TWNYILX3 °6 378Vl

s o gt JAAE Tk A

T

331A9Q/4%H) 01 JUBUOdW0)/S3ILAIQ © 3NN NS
aseg
Kaobare)/aey) 01 | satuob63je) juauodwo) @ e3eq
a4
$3517 ABojouyras Jajsey 2 1t
~yoJeiaty
$$920Y
sJagoeaey) 02 49411u3p] a3 1 wopuey Iseg ejeg Abojouyrag S
AAIQ 43d uot 31U} 330 $31 43
spaR) £ 03 | DA epLpue) z PLROGAIY
40 pae) :
usn| 0)-08 oy LUt yag
pae) 1 S43LJLIUPT L4 1 194 3u9nbag uo1jeanb) juo) 3epipue) [4
U0y 323135 |
WBLDL3330) | SIUBIDLJ30) AALIMLS S
SIURAISU0)
JULRAISUO)/Pae) | | jusmubyssy Guruoyyyyaeg]
$40)204
J03de3/pae) | uoL3eN|eA] O} 31 39dS £
s4030e4 $3) 43u3
spse) ¢ uoLIen|RAj (RqoL9 2 pJeogiay
20 pae)
uan{0)-08
spae) 2 SJ21443Udp] L4 uny 1 o1 quanbag sinduf JOIRNYRAY Jasn £
718 n dNo¥S IdAL un 1401
Q9023 ni4

(€ 30 2 I93YS) SINIWIYINDIY ONIZIS 3114 TYNYILX3 °6 318Vl

R T g O A T ey

S3INGL AN
24U d¥9 pue SUOL]LUL 3] IDLAIQ
§-1d01 93 J14109dg s,u Juauodwo)

6ue/avy) 01 sabenbue @
9dL)/aey) 1 sadhk] yoorg @
dsiq/4eyy ¢ saut|diosig o019 ®

. (papngdu0))
43Su]/4ey) 0Ot SUOLIONAISU] @ aseg evyeg AGo|ouyda)

aIs ERIRNE ERTR
QY03 N3

(€ 40 € 399yS) SINIWIYINDIY ONIZIS 3714 TWNYILXI °6 378vi

TABLE 10.

INTERNAL ALGORITHM TABLE SIZING REQUIREMENTS

TABLE WORDS
IPT NO. TABLE TITLE (60-bit words)
1 timits, Constants, and Code 20
2 Current Problem Sizing Controls 9
3 Priority Controls 28
4 Current Processor List P*(13+i)
5 Current Memory List 11*M
6 Current Communication Link List (3+3*QND)*9
7 Current External Device List (4+DB)*d
8 Task/Processor Allocation and 9*T*p
Restrictions
9 Memory/Processor Communications (4+4e)*M*p
Allocation and Restrictions
10 Memor y/Block Allocation and S*M*B
Restrictions
11 Master Block List (114M+2T)*B
12 Master Task List (16+51+6*B+e)*T
13 Scratch and Local Parameters To be Defined

76

IR T e T R o i oo S

M PO = a

JOVIAL is mentioned because of its recognition by the Air Force
as a standard language for embedded computer systems development. A
major drawback is its limited I/0 capabilities, which is a major factor
with regard to the partitioning algorithm's large data base handling
requirements.

ADA is also mentioned since it is the DOD language being
developed with source language standardization as a major goal to sup-
port software development of new military computational subsystems. The
on-going compiler developments are limited to experimental compilers and
compiler design efforts. Therefore, at this time it is not a feasible
candidate for actual algorithm development and testing. It will be 2 to
3 years before it is available in an operational development setting.
Further implementation/expansion should wonitor and consider ADA since
its features will permit more configuration control as well as the struc-
tured expression of concurrent process control flows, I/0, and computa-
tions with concise data base definition,

In conclusion, FORTRAN is the recommended language for imple-
mentation of the partitioning algorithm.

4.3.3 Modified Linear Mixed Integer Program Optimizer

The partitioning algorithm has the potential for future inter-
faces with a modified linear program mixed integer program optimizer.
The current algorithm design is based on a heuristic algorithm driver
that assumes that an initial feasible partition exists with respect to
the basic real-time processing requirements of data availability, task
timing, and less than 100% processor/memory allocation. From this
initial feasible solution, it seeks to determine and make improvements
on the initial partition with respect to three goals: (a) processor load
balance within given growth allotments, (b) memory utilization within
growth tolerances, and (c) minimization of development costs. Although
heuristics do not guarantee an optimal solution, it is anticipated that
the complexity of priorities and data constants will change frequently,
which makes the finding of the true optimal a meaningless exercise.
Bowever, optimizers can be employed to help find an initial feasible
solution and to find optimal subset solutions under the control of the
heuristic decision tree. In the case of the partitioning algorithm, the
initial feasible solution poses the largest problem in terms of sizing
and numeric accuracy techniques that are required. Table 1 summarizes
the optimizer sizing as a function of the size of candidate designs to be
evaluated.

4.3.4 Computational Speed and Accuracy

Although the partitioning algorithm is not as demanding as real-
time simulation or control codes, it is important that it be able to
support quick-turnaround evaluation runs to expedite the given evalua-
tion case. The complexities of the processor utilization calculations

77

Rt . A

< SRt

W o Y A

WL 15 3 o < NNy R e e

in terms of task computations, resource management, and I/0 are iterated
with respect to potential processor tradeoffs for load balance calcula-
tions that involve a variety of attributes. Since the basic computations
are subject to mathematical model expansions and changes, floating point
capabilities are recommended to permit new equations to be introduced,
as required, without the burden of fixed-point scaling.

Units have been selected to keep related variable numeric order
of magnitudes within computational limits of most scientific machines.
These units should be periodically examined as technology advancements
are made. For example, many current real-time flight trainer applica-
tion cycles are based on l-sec intervals with subcycles or subframes
measured in terms of milliseconds. As timing improvements are made,
these may take on smaller increments of time for application cycling,
hence the need for their periodic reappraisal. Anoiher factor is machine
cycle time, which is currently measured in nanoseconds; thus, certain
calculations involving memory I1/0 must be accumulated separately to
obtain totals that can then be used to determine any appreciable I/0
timing for tasks that handle large volumes of data in addition to compu-
tational processing. Typically, 32-bit floating point can represent six
significant digits. Thus, if a basic unit is assumed to be 1 sec, the
nanosecond effectively.is disregdrded unless accumulated separately.
However, if either double precision (64 bit) or 60-bit single precision
is used, there is no problem. An alternative is for task memory 1/0,
resource management, and individual instruction timing computations to
be accumulated for total task time in microseconds, and then task times ‘
may be added separately for a given application cycle time in terms of !
current task/cycle relationships. Thus, there is the need for floating f
point, with a minimum of 32-bit words sufficing for most operations, and A
either segmented units or double precision variables to account for {

1
!
I
|

T el

application subtask timing computations.

The use of preemptive priorities rather than weighted priorities
permits processor loading, memory allocation, and development costs to
remain in their standard units without any input scaling and output
rescaling. However, in each priority level, numbers for a given task or
data block should be summed separately from totals being used for total
memory or total processor utilization to avoid underflow accumulation
problems.

4.4 RECOMMENDED IMPLEMENTATION SCHEDULE

The major tasks and their hierarchical relationships are
depicted in Figure 16. Each of these tasks is briefly described in this
section with cross-references to appropriate report sections for related
details. Although some parallel task sequences are depicted, there are
some interdependencies, as denoted in Figure 16. These interdepend-
encies are basically handled at major detailed reviews, which are recom-
mended to be held quarterly to assess the implementation progress, to

S

- T e . e

78

|

-

11 1.3 1.4
VALIDATION COMPUTER OPTIMIZER
PLAN INTERFACE SELECTION INTERFACE
) 2.2 . 2.4
ESTABLISH DESIGN CODE/VERIFY DESIGN
MODEL REPOSITORY BASIC OPTIMIZER
VALIDATION PROGRAMS ALGORITHM PROGRAMS
PROCEDU , ,

SCRIPT DEVELOP DEVELOP
VALIDATION REPOSITORY OPTIMIZER
PROCEDURE PROGRAMS PROGRAMS
DATA i
X (%]
VALIDATE VERIFY
BASIC EXPANDED
ALGORITHM MODEL
2 5 X
VALIDATE FORMAL FINA
EXPANDED ACCEPTANCE H agpo'ﬁr
MODEL TESTING

Figure 16. Algorithm implementation tasks.

-y - LY -
e e

P A gy

AP 3. DRI AR INE ¥ 1 L o

ensure that interface definitions are adhered to, and to establish more
detailed interfaces as the appropriate operational consideration details
become known.

Figure 17 groups the tasks into four major implementation phases
over a 2.5-year period. There is an overlap between Phase I1l and Phase
IV, with the major emphasis of Phase III placed on basic (as currently
designed) algorithm validation and witn Phase IV emphasis on an expanded
validated model incorporating an optimizer for selected aspects of the
partitioning algorithm. The implementation tasks are now described by
phase. To make a complete task statement, there is some redundancy with
earlier report sections. Cross-references are made to avoid excessive
redundancy.

4.4,1 Model Validation Plan and Selected Computer Interfaces

Although the candidate computer selection aspects have been de-
scribed (Section 4.3), the specific computer implementation must be fur-
ther delineated to obtain a practical partitioning allocation and eval-
uation tool for flight trainer simulator computational candidate design.
Existing evaluation computer facilities should be reviewed for current
formats and data collection procedures in addition to the current com-
puter capabilities to contribute basic inputs to the Phase I tasks, which
are now briefly described.

4.4.1.1 Validation Plan - The sample problems manually demon-
strated under this contract have verified the feasibility of the parti-
tioning algorithm design. However, they do not constitute a model cali-
bration case from which a confidence level of model validity may be
derived. As evidenced in the mathematical statement of the partitioning
problem (Section 3.1), there are many interrelated variables and factors
that drive the partitioning process, necessitating some parametric auto-
mation techniques to fully analyze the automated design validity and
stability for real-world data. The validation plan will permit con-
trolled algorithm implementation testing to determine its validity with
regspect to known partitioning situations of selected flight training
simulator computatational designs. By addressing evaluation partition-
ing problems to be handled prior to algorithm coding, the evaluation
community is essentially establishing the foundation for the algorithm
acceptance test with respect to its role as an evaluation tool.

As a minimum, the validation plan should identify the flight
trainer system(s) to be used as the algorithm implementation baseline.
It should also extrapolate intended sizing of the algorithm application
in terms of the number of each data base item described in Section 4.2
(i.e., number of tasks, blocks, processors, memories, etc.). A set of
test cases should be drafted in an outline format as to specific algo-
rithm features to be incorporated and tested for both the basic model and
the expanded model.

80

i
i

R T ich e O b s S it SRS RSN v Lo

"SASeI JO diysuorie|ad dwLy pazdefodd /I a4nbt 4

. 140434 INIWSSISSY INION3IJIaNS - O
&2 N1 14043y IVvNId vy

Kem - el $1S31 3ONVI4300V TvNu03 |y | 3V 0L NOILVINISIU4 a31NINNI00 - O
13QOW 03aNVAX3 3LVAITVA | Z'v | NOISSNISIQ ONV M3IIA3Y SSIUT0HL

o 7300 GIANVIX3 AIEIA |1 INIWJOT3AI0 ILISNO MIUIINI -
ocj6z|ez|iz]|ez|9z|ve|ez|zz]1Z]0zZ] 6L

NO1LJIYIS3A NSVA

‘D0Hd U3ZIWIL40 4OT13IAIQ £e

1 WH1IUO091V DISVE ILVAITVA ye
A\

\¥i 'O0Hd AHOLISOd3Y dO1IA3A |z¢
7 V.iva NOLLVAITVA 14IUDS 3
Leisifrifer
HINOW

l
q .o.c.._i.

1zjozje

-

oy
]
b~

NOILJIYISIA NSVL

i 3svhd

‘D0Ud ¥3IZIWILJO NDISIa ve
V'8 AJIHIA/IQ0D X
'O0Ud AHOL1SO4d3IH NDIS3a TT

$3HNA3JI0Ud NOILVYAITVA [XA
NOILL4IHIS3A NSVYL

Ty iijosjef8]|L
HLNOW

IV 3SVHJ

IIVAUILINI HIZIWILIO re
NOIL3373S H3ILNIWOD £l
NV1d LNIWIDVYNVYW ViVva
NVI1d NOILYOITVA

N
[

999
|

-
»
-

G

sfvjelz]
HANOW

NOIL4INTS3a NSVL

| 3SYHd

4.4.1.2 Data Base Interface - The specific flight trainer com-
putational design repository format and data base management utilities
should be delineated by this task. This includes finalization of the
user interface formats (such as those contained in Appendix A) and the
format by which the partitioning algorithm may retrieve its inputs and
store its outputs with respect to the repository and the interactive
and/or batch user.

This task incorporates the data collection, storage, and
retrieval mechanisms, plus quality assurance steps necessary for algo-
rithm implementation and usage. The repository data management should
incorporate responsible agencies for each input area and make maximum
use of pre-editing and file management utilities of the selected com-
puter system. The results of this task should be compiled in the form of
a users' manual for the flight trainer design repository and specifi-
cally address the partitioning algorithm interfaces. These interfaces
include the master design simulation language instruction set and guide-
lines for processor, memory, task, and data baseline descriptions
(covered in Section 4.2) that will streamline the orderly preparation of
inputs and permit gradual controlled growth into a fully tested and
implemented repository system for multiple evaluations.

4.4.1.3 Computer Selection - Computer candidate selection has
been discussed in Section 4.3. This task ties Phase I activities
together to determine the specific coding standards and interfaces to be
employed for algorithm implementation for a given computer facility.

4.4.1.4 Optimizer Interface - This task permits the long-range
interface goals to be defined for potential optimization steps in the
heuristically driven partitioning algorithm. This is a major area for
further study and, as such, is recognized in Section 5.3.

4.4.2 Automated Algorithm Verification and User Design
Foundation

Phase 11 permits the initial automation of the basic algorithm
and delineates additional programs that will aid in the bookkeeping and
increase computational confidence levels of an expanded partitioning
algorithm. Each of the tasks is now defined.

4.4.2.1 Establish Model Validation Procedures - This task
expands and enumerates the test cases outlined in the test plan of Phase
I. The nature of the basic partitioning algorithm is to seek and, if
possible,-find an improved partition of tasks. Thus, the test procedures
must inglude the means for reconfiguring the subject flight trainer for
which J%pupposedly "better" partition has been found. In addition,
related performance measurements of the newly partitioned configuration
must be specified as to what and how they are to be collected and
evaluated to access the predicted partition improvements of the parti-
tioning algorithm. To assist in this step, the multiple processor

82

simulator being designed under separate contract may be used to provide a
quick look at the dynamic aspects of the new partition prior to making a
reconfiguration decision. All of these considerations must be placed
into a timeline for algorithm validation testing to account for permis-—
sible reconfiguration in the partitioning restriction. For example, if
special-purpose tasks may only reside on special-purpose processors,
they should be declared as such in the partitioning algorithm evaluation
options. Thus, realistic, measurable validation test procedures are the
goal of this task.

4.4.2.2 Design Repository Programs - The users' manual of Phase
I will undoubtedly require specific repository storage/retrieval pro-
grams to be designed to augment the system-supplied data base capabili-
ties to support the flight trainer evaluators "input jargon" and to
efficiently handle the input and subsequent updates to each of the vari-
ous files to ensure consistency and completeness of any given repository
transaction. The results of this task constitute the detailed design of
each and all repository programs to be implemented in Phase III.

4.,4.2.3 Code/Verify Basic Algorithm -~ This task is the most
straightforward of all of the tasks and simply entails the coding, debug-
ging, and verifying of the basic algorithm as designed and demonstrated
as part of this subject contract. This provides the working baseline for
all future expansion in both model repository and optimizer interfaces.
The results of this task provide a source code listing, verification test
case execution outputs, and documented interpretation.

4.4.2.4 Design Optimizer Programs - The emphasis of this task is
to be placed on upgrading and complementing an existing mathematical
optimizer package selected in Phase 1 with respect to computational and
logic needs peculiar to the partitioning application. This task
requires extensive knowledge and experience with mathematical optimiza-
tion codes and their numerical stability in terms of accuracy, scaling,
iteration, and masking techniques that can judiciously expedite the
solution space search for initial feasible solutions. The task also
requires knowledge and experienc:. with optimal subproblem solutions as
called by the heuristic driver of the basic algorithm. The results of
this task will comprise the detailed design of programs to be implemented
to support the optimizer interface.

4.4.3 Basic Model Validation and Expanded Program Interface
Development

This critical phase permits the large-scale, real-~world data
assessment of the basic algorithm to be made. The first part of Phase
111 is associated with specific data collection, scripting, and support
program coding. The latter part of this phase incorporates efforts of
the first part for basic algorithm validation testing. In addition, the
optimizer programs are developed in preparation for the Phase IV
expanded model. Each of the Phase III tasks is now described.

83

4.4.3.1 Script Validation Data - Validation input data must be
collected and prepared utilizing the validation input procedures for
each test case for basic algorithm and expanded algorithm validation
cases. A test case can not proceed until its basic inputs have been
properly prepared.

4.4.3.2 Develop Repository Programs - The programs designed in
task 2.2 of Phase II are coded, debugged, and verified by means of
validation input procedures to assist in the input processing of
task 3.1.

4.4.3.3 Develop Optimizer Programs - This task codes and debugs
the programs designed in task 2.4 of Phase II in preparation for expanded
algorithm verification and validation of Phase IV,

4.4.3.4 Validate Basic Algorithm - Each validation test case is
made in the order prescribed in the test procedures. If any problems are
encountered, their impact on the test plan and case procedures must be
fully evaluated to determine what action, if any, is necessary to con-
tinue the test program. All test execution reports should be included as
appendices to the test summary report. It is anticipated that certain
validation tests can be run prior to complete implementation of the
repository to exercise the fundamental paths of the algorithm.

4.4.4 Expanded Model Verification, Validation, and Formal
Acceptance Testing

Phase IV paves the final path to the realization of the parti-
tioning algorithm as part of the standard flight trainer simulator comp-
utational design evaluation and/or design guide tool. The full reposi-
tory and added optimizer capabilities developed in the first three
phases are now integrated and tested to provide a controlled user inter-
face for multiple evaluation situations. The tasks are now defined.

4.4.4,1 Verify Expanded Model - This task consists of selected
basic algorithm test cases to verify that these cases are still properly
handled in the expanded model. In addition, new path verification tests
are incorporated by the designer to verify that new capabilities are
working as designed.

4.4,4.2 Validate Expanded Model - This task performs the exten-
sive testing as defined in the validation procedures for the extended
model. As with basic algorithm validation, if any problems are
encountered, their impact on the test program must be evaluated and it
must be determined whether any action is necessary for continuance of the
test program. All execution results should be included as appendices to
the test summary documentation.

4.4.4,3 Formal Acceptance Test - The complexity of the parti-
tioning algorithm and its potential evaluation decision-making impact

- ——

e
AR Y. . R

BTN 1 e

N strgon 73

necessitates the need for formal Government acceptance tests. These
tests should be scripted and performed by an independent orgamization to
fully assess the delivered capability with respect to completeness of
documentation, configuration, quality, and purpose. The major developer
is involved as a consultant to explain or expand documents and to respond
to any questions concerning the delivered operational package. It is
anticipated that Government flight trainer system evaluators will be
responsible for scripting and conducting these independent test proce-
dures since the test will serve as a training task that emphasizes the
intended operational user environment of the algorithm.

4.4.4.4 Final Report - The emphasis of this task is to be placed
on finalizing documentation of the automated algorithm capabilities,
findings, and conclusions. This documentation should be accompanied
with the final user, test, and program maintenance documentation for
specific program implementation details.

e aga et RS

ERE S PRy S 3

a
PO
W

PRt ——

AT N PN e

2
3
i
r
1

5. CONCLUDING REMARKS

Software partitioning is a complex, design development/
evaluation, decision-making process with many tradeoffs to be analyzed
for selecting a good candidate flight training simulator computational
design for a particular operational trainer implementation or upgrade.
This section briefly summarizes the details presented in Sections 2
through 4 in terme of the study findings, related work, and areas for
further study.

5.1 FINDINGS

Candidate software designs expressed independently of candidate
hardware are the basic key design feature that permits software parti-
tioning flexibility. This is not the traditional design approach cur-
rently in use for system design. This project has defined the types of
design data that will permit independent assessment of baseline software
tasks for alternative multiple~processor configurations. The key data
areas are the establishment of a standard design language and an auto-
mated repository for the given application design data.

The partitioning algorithm has been designed as a general parti-
tioning algorithm for software systems, and it is the data collection
process (Section 4.2) that will make this algorithm unique for a given
application implementation. In this way, it is seen as a useful tool for
the evaluation of a wide variety of computational subsystem designs
since it is not constrained to current configuration, technology, or
application.

5.2 RELATED WORK

The results of this effort are closely coordinated with Contract
No. F33615-79-C-0003 for the AFHRL Advanced Multiple Processor Configu-
ration Study. The multiple-processor study is concerned with features
and techniques for assessing the predicted performance of given alterna-
tive candidate designs., The partitioning algorithm is looking at task/
data allocation from a static analysis point of view to ensure that real-
time computational requirements are met with a balanced load. The number
of entities that must be considered requires that parametric analysis in
terms of average or worst-case numbers be used in the partitioning
process. The dynamic environment of the flight trainer computational
task allocation requires the addition of network, queuing, and simula-
tion (batch mode) tools to predict and assess the performance of a given
allocation partition with respect to representative scenario loads and
resource mansgement rules. The multiple-processor configuration con-
tract is incorporating and expanding the conceptual repository to
include the dynamic performance design aspects that are pertinent to

Bt i s U e am

¥ alternative computational candidate design evaluations for operational
g flight trainers. The results of this related effort are to be published
g in the final report scheduled to be distributed on or about 31 Oct 80.

5.3 AREAS FOR FURTHER STUDY

‘l"i
F

TN i G T T

Advancements in systems development and training features are
sources of continuous change for flight trainer systems. A "good" system
today may be obsolete in 5 years or less if it does not possess modular :
H design capabilities. This is particularly true of the computational {
3 system, which must act as a coordinator, interface, and decision-maker
to assist the human operators and commanders to better perform their
jobs. As new/upgraded flight trainer systems are required, the basic
design models plus new/modified modules may very likely require reallo-
cation of new processor, communication, and memory technologies. Two ;
major areas of study have been isolated as the key to potential reali- £
zation of a truly automated software partitioning algorithm: 2

L

T

3 rLiprenr

1. The employment and expansion of mathematical, mixed integer,
program optimizer techniques for large-scale partitioning
with multiple objectives

2. The development of a master flight training simulator compu-
tational subsystem design repository.

These two areas have been incorporated as major tasks associated with
automation of the partitioning algorithm described in Section 4.4.

In conclusion, automated software partitioning is feasible., It
will require further study, design, and test steps that are directly re-
lated to computer facility selection for its implementation. The major
training simulator candidate design impact would be toward standardiza-
tion and separation of the software design representation and data from
processor hardware configuration representations and data, The results
of the standardization would permit a consistent flight trainer computa-
tional design automated repository to be established and used in both new
design and current design evaluation tradeoffs in the areas of software
partitioning and predicted performance of multiple-processor configu-
rations. The use of an optimizer will permit certain tradeoffs to be
automatically made and determined in a more straightforward manner, per-
mitting more time for manual evaluation comparisons and decisions.

z
k
!
g
J
§
)

e,

87

e

AR e e TS

APPENDIX A.

USER INPUTS

A.1 WORKSHEETS

R T i g - o wme B . it A N s s g B - e 0 o A e e SR

—\<-wd—q+..d1-d\q--—-d-4—
—‘jqa—‘fj- -;ﬂcqn\q—qqddd
T SLJ S B B O S B B S e o g e e |

ISVE ViVQ ADOTONHOIL

aVvO1 ONINOILILYVY INITISVE

SANINONOD NOILYENDIINGD 3AVOIONYD
SANINOINOD NOILYIIWEY INITVISVE
SLNIWIUINOIY FIVAUILNI IWNOILYLNNGD

YIANIO)

N4

T 71 43IBNNN NOILILYVY

—‘|1-J\-|-\d\--11111-

T T NOILYIIIILNIOI NNY NOILVNIVAS

90

(SUV3IA NOSU3A
(T 35vD ASHOM 3oVMIAV | MY T T T T T e M 1509 ANINJOIIAIC
(G314N290 %

| 3svoassom 3ovwaav [T T Y M NOILYZITILN AVONIN
(ASNE %)

| 3svo 1suom 3ov3IAV | T T FYTYTTYTYT| M | NOLLVZITLA $OSSI0084

SNOVLYH3LI $13IAN W
T 1N312133300 H3ddn oo u30v0 ALINOINS

SYO0LIVI NOILLYNTIVAI TVROT1D

sun ey LS AL IRALE IABL L UIAANIOI NNY NOILVATIVAI

MISAS DMIAVUI0 2 SIIAIY AUV -}

73333333373 |

:
g

. BHIANIN
NAISAS
NN

SLNINOMNOD QIUNIDIY

T TTTITYTITY T I o) uaidiiedd 3Us SININIMN0IY 3VINIINE WIISASHNIS TR0l LVINN0D

92

F133333333313 ¢

IR 3 1 ST

il e A3

e~ M ey g

4 un u m URLEEAE A S [s on e o Mo ae o o o'
] uN u M InAaas sl (ausassNeesa sy
[} un '] (m) ARG AARAS (naaaasNeanans
[} un u m ML IR (e an e an B Sk an e an on an'
'] uN "} m (yyvveypvryy ey rrTr
2 us u N aannsanans (nanansWe oo oy
e uN u M aasnsasans e e We o pst
'] uN '} [l rrryryrvvry _JJJ.JJJLJ.JJJIJ,
13401 110010 1) 1ws s ..»ﬂ..mmmu.m e st
VEVNI 1) 1N3OIS3Y a3D)AIS
$I2UN0STIY ONV SIHNLVII DNINSVI 1IN
rT T g rFYTTTTYTT, SAUOM S3iAd - » MVTTT VYT Au0u3n ABVESIY 1804815
TYTrTyryTr)y, FrevTr g SUNOM S3LAY w » FITYTTTIVNT] AyONIN SAS OMILVY 340
FIYrrrrryTmg Ty rYyyrrrmy, SAUOM S11AQ " » rrrrvryyrrm :AMON3IN 31BVSSIVAAV
YT Ty, T D Y™ ™ " 513A3% Alnoe
SIVVOONY § ™ SVIAZT NSVE 121 W

Quows M (T Y VT T VT) ss300v

S$31a8 77V - quom

OHOWS H FY VYT T VT 1T iy 31949

St 71 - 3108

(T TTT VT waiSAS SNILVEIS0
YT rY Py ToITyigossiooud

(TTTTTTTITITIUTTTTT T T udeaiindal 35ve VIVA ADOIONND L

TYTY I Ty T (Y TY YT | (VT YT T (YT YT (YT TrYYYT Ty YTy ISVD ASHOM
Ty T Ty rIrm vy Ty ey | oy ey T frTTETTTYT T YT T T YT T rrTrTT) AV
INIL INO IVNOUVIAMOD SsHO13d S3uol 000 WISV IR
ANINIOTIA XKt {SIIIAI) ONIML
J1SAS ONILVH 44O

Sl si18
vivo

NG 12080

AD-A096 187 TELEDYNE BROWN ENGINEERING HUNTSVILLE ALA SYSTEMS DIV F/6 9/2
SOFTWARE PARTITIONING SCHEMES FOR ADVANCED SIMULATION COMPUTER =-ETC(U)
FEB 81 S J CLYMER F33615-7B-C°0013

UNCLASSIFIED AFHRL=TR=80-42=PT=1

2. =
Bt

—

““ 10 = h N
B2 oy

. B2
pER

[
N
o

—
.
—
ey

EE

o

N
O

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAG OF JANDARD L o - 3

e e | perervrerrm v | ey ey Ty
annssnaauslosssl NasassnnsssNeannll Nasnss nanss Wea il laasss's o o u

e e | ey, ey | ey | e
e e | ey ey | e | ey
e e | e e | eeereeera
e e | e, ey | ey | ey
et A | e, e | ey | ey
ey e | ey ey | e | e
v e | e e | e
r—— 1 A | ey ey | e | e
e | e e | e | ey
e e | e ey | e ~n | e
ey e | e ey | e
e e | e ey | e | ey
ey, ey | e, ey | e | e,
ey ey | e, e | e ~n | ey

31V puU L}
YILIUNID
INA;

AT

2 et o N vF D g
'
SIIAI0
LNIDV SUILN FUOW ANINOMNOD 34A1 3NAID 3NAI
1 NN ALIuuIng VNIV SUILN ONIV IUIAN w0 L)
2MAIQ
s ¢ 100 DZIS - 1 ANOW Iy)
GIIOWS IV
SIOVODNV 340N ¥ JOVADNVY 9 € JOVAONVY - § Z 3uvnowvl v INAs0
40 IILNO0D 1 39VNONVT - € | Waisas Omiaviado -2 | $13A30 3ADV - L HOSSII0U4 ~
m] rFyryrryrrry frvyeyyJyvrym) frerryrvery frevyyyvryy v,y —--——--- (e}
(m] ryYvrrrTvYTyTTy frrrryvrrr) frrevrryryrrh Frryryvyryr naAAS BREARS] m
m Frrrryyrrrm rrrrryrryrTy Frrrryrrermy Frryryryrrn) Frryyypryrm) ™
m vy YY) rrrrryyyryrn) rrryyrTY Yy, frryYvyyrrrTy rrryyyrer ey ™
([l ﬂjl-,-.lqldjj fyrrryyrrir7m rrryrrrm FryvryyTyy) ---—--- m
- ePE 86 ¢ R Y INHN 3NAM 34a2
NINGD NOI 14D N0 NOILIO IAVIONVD PP

GV IUI AN FUV SINAIG WNOHIOAV $1 SINTINCD GIWIN0IY Lv3daY
1SV SINIT NOLEVIINIWNGD 1813
SIMAIU UINNDIY INIMIN0D 01 $IMNAIC O3S04084

YT TTTTY YTV IV T VUV udlAiNIO) NOH VYN INGD J1VOIONY)

97

rr ..111..1]1.4.4 aalins]l pasannny BannsnnnasNes Fasey! UMARRE AR
‘BasEsmanms T (palinal nasaannn sUREE AR Nl Bl Sanan i
SEassaanay' aalinalnasannns aanssnanasesiFanay! Ty
ey MMy, s IASRal Nal BANAE B
Eaassmuans Fas ..JJ&...I]JJJJ....-JJJ.J..JJJJL-J [naaslNal Ansas RRARE
SRS RARRE (palins] nannamns aannnass e Fannnl e _;41111]:4)
YT Ty MMy - ey ey
sanssenans nansssannns sanasannes Faslinsl aans sy aanssansas oy Faass '‘SARRERARRE
ARBAERRRRS ‘nalnal Rannamnn -y ey Ty Ty
ERRREEEERE M I ey -] ey YT
yryryyryryryryrm .l.J-I..jJI-IJﬁJI]JI—JI«JJJ:-IJf] Yy ryyvyy vy
manssnnens Enalinal (aaasspanasNas Inaes] —qJJJJl—JJJJA
"SRR S mE ama ‘malinal naaaanas! Faalinansl el Ranns SR
ARREEpERRS) M iMmMmerrrrerm - mj]n
Ty rrereereery ey em| aanssaanaaas Inaasl el aaass AARRE
WONIXKVIN WVY O e Fre Soucom 2ovaene o agu-_ ™
M 3218 GUOD Y - LTS ‘J 1
SNOLLNG IO Vvive
[(nanss RARRE RRRRERERRRRN) 110300 NOILYII IV FUVML H0S sva

xve v w00
3313084 SWCO W viva b
(aannsaanssl v e ovnoNvy
AJMINDI Qs
(TTTTTTTTTY e v uSV4 UILS) (anaal

NOLLIN 30 NSVL

I3AFT MM AVIVIVAL TVHOTD O1 $1 L WWAD ¥NVIE 3t «

101

[} v [S A] Yoy T [ARIAAE BB E % L]
» v rrreyryy™ Ty [SR | n (]
" v rryryrryyryTm (RARAS ARSRS rrroroerrrmy o1 []
[v [iaie LS | rverrrTYT T rrereTreTTTy 2 P
" v (Rana Ranss] (RARRE RARRN) (RAARS RanE] k11 -
L v rrrvyryyy e,y [SRS SRR] FrrrryTYyrymy o8 [
" v oy TrrryTT) Frrrryyyym ARARME AR n -
» v yrrryyTryT FrrrerrTer Ty cTrryryvyyTy n [}
L) v crrYrvyYrYYyTTy g SRR [AR | an a
) v Ty ey Ty [ARARE BAARE N []
- oo s -

SHOLIVS NOILVATIVAR 2 41D3dS

FYTrTT T T rTTTrvrrTy T T aoivisitNIo N NOIAVAIVAS

T e ™y n n
—]I«l]l—l«lqul-ﬁlijljlqjﬂ.Jqu-.ﬁ- m m
(P T r Ty vy Yy O Yy T rrrryjfyyrrryrrrrm mM m
—Ijﬂjldl]j—.-«ﬂ14<-——l4|ﬂnjl—lj m m
rrrryyryyryryysryrrrjrrrrrrrrrm () M

‘ddV 41 NVA HIAILNIQ) QILBIHOY - d

ASVL - 1 IVILING - 0

A1NINOIWOD HAIHANIO viva-a a3ixis - 4

NOtLYUNOIINOGD LNINOINOD LNIWNOISSY IdAL

31VAIONYD NOILVIITddY AN3INOIWOD LNIWNOISSY

SANIVHISNOD LNIWNOISSY ONINOLLILYVY

YT T T VYT T T T T T TIT 7 V7T 1 NOLLVIIFIANIGE NNH NOLLYNIVAI

102

A.2 DEFINITIONS

Avvd t-1401 D238 $vaa at 64-ADN=-L2Z aiva
adfhy AsoBBa3D9
uodn pespq 2 d4nous
S$~1d01 eseq oj0p
ABOJOUYDS) Ul 831N CLIRY DIWRRYT T ¥4
-8p 03 ya3yow JIsny SJBZODIABYD 1T airdia essitneQ °i ;) I00dg"
2 dnoub g-1d4d01 espq
o30p ABOIOUYDSY)
oYy} Ul psuijep
sPp s8pod AJLOBS3DD
ARBojouysey Byy ul spod
AIJUS UD yYsqybw sny J039040DYyo 2 11018 sdahy ABojouyvey
(¥=-1d401)
FUBUOAWOD UD | JIDI
«NB) jUCD 8IPPIPUDD
o3ul dow 03 J8i)
-i13UepP] sFUsUOduO) SL0YODIDYD OF aioia 484 j1uep]y -
FUSYOANOD YODe 484
301A30 GQ381IN03A
VINALINT HILEAS 2
poLj)i1oeds BSuieqg
weyshs Ajjijuepl a1l x4
Rjenbjun o3} pesn S403204PY) H2 arasy SLNINIAIN0D2Y SHILEAS | §
ONINVIH ANTIVA/ESLINN SANIVA JINOHINK IUVN AL VEVL | 439

103

o

9vd I=-4401 238 €vaa as 6L~AON-L2 aiva
Je80qu]
SJ4032040YD eni1I1904d (¥) AVOSH PIOA/S4830DIY)
40883u] 40300404 /%31Q"
sii@€ SAi}isOgd (€) ilvasay yjsus) pJosey-
J0803u]
[LERER LT | (2) iAvasa SPJIODO0Y WNW| XD
SOpOod suijdiosp
03DP 48380W 2 dnoJ4d epoa
S$1401-87v30 *P owd§g 483904042 9 (1) Lvasy sulja19%10°
pous |sso
YO Iym o9 48131y
00asy «usps eoinep weyshg-
19083 48)13uept ¥°01@°
NOOIq DIOP YOPS 404
34 4na
/X208 viva HILSAS €
(141012
rano4s ‘G-1401 edafy ASojouyos)
esPq DIOP RS0 40} suojjdo o
~0UYI®Y ULl PBWIO} 40qQunuy 03 e} SJ0ym
Yyojyow 03 petL) ioedas S51a SO0D)A0UL 40}
oq Jsnw suo | 3aQ uodn juepuedeq (%) 40018 Suo0 1300 pes nbey-
ANINVAH INTVA/SLINN SIANTIVA DINOHINK FIHYN ¥3LIUVEVd | 480

s$Tvaa

104

r

39vd 1-i401 D38 |8Iv4a al SL-AON-L2 3ivo I 3Nssi
PeO 1na0S
(2 anoJus) aIdId f eoDjIeU| WeShe
Ul RAUS HYaPw BN L FL LY FY I'E W) (f) 11488 .NOD® J40) 48) 13uGP]

Jefejzu]

uoijvun; NAq
POOINISS BBODIIBAU)

®nj13i80d S14838 weyshAe 30 Jaquny’
Sutwiy '
agL ocdi82 Asuenpes) uejynoexz-
s483004DY43 g1 a1 4s¥ detp13usp] UG IIDUNY”
UO32UR} YODe 40
SANIMNININODIA
NOIL3NN4 HALSAS 4
4e8083u]
spaom sai3i1804g (Z) 1vOosH spaom eSpieny-
Je883u]
cpiom entyi1804 (9) 1vasy spiom wnw) XDy~
Y YIYVT
spiom sni131%0g (S) Lvasy spaom wWnW U IR
ONINVIH ANTVA/SLINN SANTVA DINOHINK AUVN NALIHNVEVL | 48D
$1vaQ

105

e g i b

2 G i it T ™
33vd I1-14d01 238 €1vaa al 6L~AON-LZ 3iva
. Je803u] Asuenbed 4
PUCIBS/SPICOBY en1j3i1s80yg 24USd Uo | IDS | UNWWO)D) °
(1)Q1 484 4@l ji13uepy uo1y
uj AJique ya30Ww sny 8403004042 g1 a4dusd -=2UNj UoiIBULIISeQq"
(1)Qy 488 4843 1uePp |
us AU YaBW Isny s48309040Yd g1 [~ ¥ 3] uo§32un) esanog:*
2 9no4s 30 jys019q FY Y]
WeRSASE YOIPW JENY s40q30PJ4BYD g1 1 AUSY -jjuep}) SODJIBJIU]L"
93D 4BJUL VO (OUN}
09 UOIFOUN) YoDPe 404
ONINVIH INTVA/SLIINN SIANIVA JINOHINU ANVN 3313UVEVd | 49

$Ivaa

39vd 2-1d401 23S $1viaa at 6L-AON~L2 IAVO T 3INesI
J888qu1
£3iq eni13is0a (e)ivaas J830Pp4DYD/®31@"°
yibue) piocaey-
FY T Y I
eani3isod (2)4ivaas SPJ0D0Y WNW| XD~
SepOo3 BuUiI1di108 P
PIPP J483spw | dnod4B
6-1d41 $Iv3aa o sups spoa -J4Byd P (v)ivaas eui1diasIa-
F e3nqQiL4330
(f)ivaas ¥o%01q uUojjdisoseg”
eodh) *
f *aAN" 1+ 4093 S 1uoweuw
(f)QIQAS AN (1)A18S8 4832P040Ys gt a1eas Jdeijiyuepr”
%%201qQ OIDP YIBS 404
SNOILlINId30
%2076 Viva IvEO01d F
uny 40 pesn et}
UG IJIul jep BIDMY)OS
fRjiauep| Dy wnw ar a4
- IXDOW SJ483204DYD g2 sJ4039PaDY0O aIAsS ASVL/Q0F IAUVAL 408 |
JONINVIR ANTIVA/SLIND SANTIVA D INOHANK ANVN 3343NVEVd | 439
$vaa

107

s e

S atalsdiahiv i

39vd 2-1401 238 8vaa at 64-AON=-L2 Jiva L 4
f eodAy
YO 13ONJIISUL YO De
(u‘f) 40)) J830mBIDd
Xuiis Xiw UOIIONIISUL "
y Jroib g- 1401 $IV3Q
espg DapQ NSO 0L
-yas) uy peuiIbIUIDW
8¢ eBonBun
J838DW YOIBW IENY epoD J4839PIBYD 10818 e8pnBupT eaJdnog*
SJ4833D4PYD 9§ 18118 483 1usp ysBY
NEDY YOoOe 404
SNOILINIAZ3Q NSVL €
JeB83u
pJOBRJI/EPIOM sni13l1eod (2)ivaas spJom eBbpJeany"*
Jose3u)
p4o28i/SpIOM eni31e0d (9)ivaas SpJIOMm wnw XDy "”
Jo8083uy
plooRJI/SPIOM snj3tsod (6)iVaas spJOm WnWiuiIy"®
408034)
2483004040 [YYS YR L L] (¥)ivaas PIOA/84030BI0YD"
SANINVIN INTVA/SLINN SINIVA DINOHIANW AUNVH AILIUVEVE | 429

s$IVvao

108

LIS DRI L0 AR Al Sl 47 LA ES oo GIACIE 20 < il i
39vd 2-1d4d01 238 8$Ivaa al 6L-AON-L2 3ivao I aNes!
488030} (p°r)
eni3 1800 XWILS eSPO jsJHOpN
Je88qu) (e°f)
aniji1s0d XHIAS sBnaony
Suiwiy 40
SJIUNOD UG IINOOXRF~
JeBequy (2°f)
sajj3 1804 XWIiS BUIZis J40) JUNOD-
r o, b $-1401 €viaa
oepqg O3LPp ASBSojou
~y383 Ul POUIDIUIDN
A1 uO 1 ISNAsU) spoo (g1°r)
4030W YOJIPW IsNY 483004DY2 g XWELS Jeijiyuepy-
SNINVIH INTVA/SLINN SANTIVA JINOHANK IHVN 2313UVEVd | 439

LN

svao

109

i =7 -
3avd 2-1d401 D2as $Iviaa al 6£2~-AON-L2 3iva T anssi
1Qa.is 4O) 13uep) Noo1@~-

ADY1J40A0 UD UO epIS
-84 jJ0U SOOP NSO

Bujiynoexe ou
ueym 2T IPp UO PeJO}E
q uUPa puUP AplIdenO
UD UOC sepiIsed NEDY

0
P8 40320494

47748

nsoy Rhq

poousJejes %3019
YOD® 40} IDAS 43I
78804038 DPIBQ"

8p1 4 ADIIGAD-

ONINVIH INTVA/SLINN

SINTVA

JINOHANK

ANVYN 331 3UVEVd

$Ivaa

110

3I9vd 2-1401 238 sivaa a1 6L~NON-LZ aiva | § anssit
INAING Reny 0.8
(0/1)a%Pp3 AQ ejbpdn Nos
NSO 09 PNAUY "
spoo
4830DADYD | (2) ¥€Q1s pojsonbes mo|-°
Bujyssea0oad AEHY
3O RINQ Sy J83)D
pessed04d SPIODOY ad.®
uo§ynoexe
BujlJdnp AYIBNPIAIPY Y
pessesodd spIOOSI Vs
Suissedosd o JInqg
ayy 03 J4o0i4d pessed
-0J4d SPIODSI 110 Sas
apoo (1°¢)
403002040 | 28018 pPOISONDOL UBYA”
SpJIOOOJ NOOIq
03 F084d80d Y i1m)
(a‘f) *INQLIIIID 1PABIJIIBY
¥QALS /798DIOYS DADP NED) -
ANINVIR INTVA/SLINN SINTIVA DINOHIANM INVN A3LINVIEVE | 449
svaa

T s & -

111

£ 39vd 2-4d01 D238 $Ivaa at 6£4-ADN~-L2Z aiva
penDyS «GATS . s
pPejlqbus
DIDP PUD SWLY QaVLi.s
peiqous plop ViVQ.s
pPeIQDUS SsW|} NIl =
spoo
J83904BYyO ¢ 13X1S sdA} QuUswEIqDOuU)]”
[FYIY LT FI T
UO I PNOOXS YD) -
uoijnaexe Jeseju]l 4
NED}/EPUOIBY eniji180yg (8) ¥eais possenoJsd ebpiony”
uejijnoaexe Jefequ])
AEDY/SPpioIBY enj31804d (¥} 3€0AS POSSOD0OJId WNWIXOY " M
uojj3noexe Jefejujg E
AEDY}/SPIODOY a1} 1804 (E) ¥80.18 possesoJdd wmnuiuiyg-°
AONINVIH ANTVA/SLINN SANTIVA D INOHINK ANVYN AILBNVEVL | JEAD

s$Tvaa

PR PO,

8 A9vd £-4401 D238 87vag a1 6L-ADN-LZ 34vV0 T Inesl

UL XRY FI, 7.
poiied swiy
S A ! U - RT3 18303 BUIUG I I34D4d"

113

Y Yy}
S40300404y0 g2 1I4@s -tquep) NJ4PWYBUSG"

fAygans
POOY SuIETDQ ALY
«DJUSEBJIAO4 YODO® 404

avo
SNINOILILNVE ANIT3ISVE v

uoynoexyz 404
spucaoeg 108y ®n13180¢g WHLS 1MW) W) WNWINDY "

SNINVAH INTVA/SLINN SINTVA JINOHANM ANVN WALIUVIVE | JED

$vaa

R o TR L. i o P L

1t A9vd 2-1401I D238 8Ivaa al 6L~ANON~-L2 aava T Inssl!
SpUOCIBE YT 1w 108y (2) 11178 880 IC40n°
SPUODSS |1 IW 108y (1) 44178 oSes0ny "
. [TR
OINOONS WNW(XD~
puUODeS 48040 SPJIODSI N | JDBOU-UCHN (2) ai1178 esp] IsIon°
00y
pucdes Jed SpPIODSS ®A | 3PBOU-UOH (%) aits sseasony"
pejqgpue BIBQ 40)
(X) GLITS e384 IPALLLY BRIOQ-
(2) 41178 eSP) IsI0N°
(T) 41178 efpiony "
penD1S 40 peIqBUSs
(Xx) J1178 oW1y 403 Asuenbed 4-
4Ol ISP NED) S4032D4DY0 Q IAITS FLINERL L] 2 &J
yeoy
FuepUSdept 4YSBe Jo 4y
SNINVIH ANTIVA/SLINN SINTVA JINOUWIANN 34VN 231.3UVaVd| 489

$vaa

114

o 26 DR, DR A St s plepebialinn, < o~ b M ke

it Dt o i - it e A

T A9vd €-1401 D238 Svaa at 6L~AON=-LZ aiva 2 INes!
o40p
®J1) SINIDOJII14YDID
Noeys Aj11onhe wJioj VPP I PUDD 03D LIdOId
~edBd OGS IMIBYIO B 1) -dp Yoyej) puD INA
WwoJ4) eNIdA ewns -3N0 10QP) 03 pesn
-850 JUDPIq 1 ‘wnu 401 5 13UEPL 84Ny
-1 XDW S40320ID4YS g2 SJ4030D4BYD aidoa «08PIYOJID 8IDPPIPUDY

O}YPP 6815 UG IRIINV
~ijop qof /yspy) SI40M
=308 83DlJIdOsAAD

Noeys A1 10NDe WJ0} yo38;3 pup Indaneo
-J8d S imIBYYo O 4} 19Q07 ©3 peENn 483
wo4) SNIDA swns e QUOPI SUDIJIULSOP
S0 NUPYIq 3 wnw NEOY U0 (13009 1ddy
-1 XDW SJ40930DJDYD g2 [FT XY T ¥1 Y7) GIAS3 espomyjog SUjIOSOG"
w0
230p @11) -

squswmed INbs. wejshe
8301440,44dD 4238}

Noeys Ay 1PNbe wi0) PUP INAING J8QD"
-J40d ®SIMIOY30 81} 0} POSN 48|) IuUeP)
Wod4j enIbA ewns s3uewed 1nbey

-€P JULIQ 1t ‘wWnw ooDj)i83U) weIshs

- I XPDW $48739P4DYD 2 4030040 Y0 ailus3’ LI ATIRYL IV DT LYE

VO I13081 31}

-USPl UNJ 4O WNHW LAR IR
-) XDW SJ4832DIDYD g2 SJ4839D4DYD q4143 "LFEN'T IRY DAY L
SUAT 412
-NA0I NNE NOLLVNAIVAZ 4
ONINVIN INIVA/SLIND SINVA JDINOUINK ANVN 4213MVEVd | 4AD

$Wvao

L s Al S’ el

T ey
S

2 a0vd €-41d01 D238 $Ivia at 64-330-61 Jiva 2 INe6!
espq
P}0P Uy uo i3 iysod
40qQunu JseyBiy esn 14+8dH
280GPIOP WO4)
uo I3 t9340d 9)) 1 Odg SdW """ ‘2t
18i1%1ug 8
N 4e88qu] aldda Q] ueiIydng”
€ dnouy 2-1401
Ul sJdejjivuep]
PBGT) NJIDWMYDUSG BYY
4o SuO YIIOW IENY sJ48j0PJIDYO g2 INGda al pPPeT JJIPwWyIUeg-©
Boeys Aj311onbe wao) aqyop ABo"
~JO0d SEIMIOYIO ©11) 20UYDey e3Dj)Jd0sdaAD
wodj) SNYIDA sSwuns Yyoqaej pue yndIno
«SD RNUOIQq i ‘wnwu 18GDY 03 pesn J404)
=IXPW JO030DJIDYD g2 [FT Y 1 MY I'T) a1a1a e (3uep) ASel0UyODS,] "
ONINVYIH INTVA/SLINN SANTIVA JINOWNINK INVN 3213NVEVL] 489

S$vaa

116

. R »3
€ 39vd €-1401 238 87viag as 64£-J30-61 aiva 2 anesl
3803 jJuew
~dojensp 40§ Jene (€) aVd43
7
uo|3po0} 10 -
ARJowew J40) 8n8 (2) Od43 -~
e) PIBXZTIYIIN
Joss®304d 48) J8ne (1) aldda e1qoo11ddp j0u S
I ®eaj1j3oefqo ouez
C'2°1°'Nsa080y3ug 3V POuS SSD ®q
enijisoyg C1)0V443 09 18A87 eaij3se(qQ-
£ °o%

Il 19na8) Aji140)4d
Peul jOPOId YSPe J404°

S¥010V4
NOLIAVINVA3 VG019 4

SINVA DINCGHIANK ANVYN AL VAV | 48D
Swvaa

ONINVIKN INTVA/SLINN

A9vd €-4401 D238 €Ivao al 6£~230-617 aiva 2 ansst
esD] vJo0M M. 8
sBpaeny V.8 10A0) JUSID1))0
SPO3 J483BDIDYD (€Y) Y043 «-00 JIND0Pp NSD) "’
o8Py SO0 M.
sSpJdeny V.5 Jene) FUSIDI 40
SPOD J483390404D (2) 12043 «03 JINDjOp AJomey’
Q803 YTIOM M. s
eSpJseny V.8 A1SABY) JUB 1D} 00D
epoo J8R004DPYD tT) 100313 AN P POSENI0ILY”
FM1WIY) Jeadn UO 1Y
UG LRBT LY LINNR MNd43°39° NN A3 nNda3 ~BXIJIIN 208804 g"
eoup10q
(" AEY T SRR E L yo 1y
pPeiisep epLaAOad =DZT1JIIN J088020940
11IMm IPYY uo 1y at 40) esSpjuessed 19p0S
-PZLIIIN JOSELI0IGY ‘41T end43t 1@ and 43 P®1j ioedsun o1%0Q°
1°37° Fimgy) H0d4dn
Yo 13IBZ I IINY nNuU4l" 3 enu4a el Yo 130T 1IN Raowey -
a2UDRI0q yImous
(YT Y FY.LY BN-Y FRR] 1] wo 30X I 1IN AJowew
epiInoJsd 1M IDYY gt 40) eBEDPRIUSDISE DOB
Yo IIBZIY 1IN ARsowmely *4A1°EeNN4A3 LT N anu4da PO) 1oedeun 2i50Q°
20043 AW 4eaan
sJanoy usy “3AB°NOQII 2°91J noaJaa 3800 JFuUswdAOISNnSQ"
1008
sJ4noy usey 2°g13 82043 2%00 juewdejeneQg’
ONINVIH INTIVA/SLINN SANIVA DINOWANN ANVN ¥313NVIEVE | 49

€Wvaa

118

e T WY VAL TR N

T e e

B, R W S ndiy

39vd €-1d01

B > TG X

RS

e L

fo I £]

$Iv3aa al

6£-230-61

Jiva

sJpehuby

squeu

-oduwoa AJowew pup
4Ooss0204d JO) POIISE
-8p UOIIBZIVLING

v=-1d401 Yt J481
=f1juep) JjIuUsuUOdWoD
Josseso04d 3o
Aldowaw YIYIdbW I8Ny

4809
AuewdoIsnep NSD]

s3upy0q
USIIBZT I 1IN Aaowey

e3uUD1IPq uo |1y
-DZ4JIIN JOSSE2044g

Ad.n(8°1)
SNJ43 4o, g
‘19" (1°€IsSND43
.::. Lo .:t.
s(1°1I8ND 42

403 #°1 ATV
(1°€EISND43° LV W

s403904DYy2 gI

OUb..

DU,

.8d.®

espoo
493994DYd 2

(1°C)SNI43

(1°2)8N043

(1 1ISND43

3 JIveucdwod
403 pOZJiyn 8q
03} 1008 eaj3Deleg-~

FY YY)
-13UeP] IYSUCdWO)-

498)
-j3uepl SdRhy} PO

s83NQ LIS
'y 1008 eajjoey0g

S$d0LIVS
NOIAVNIVAI D141D3d8

119

SNINVIUH ANTVA/SLINN

SINIWA

JINOMHANH

AUVN 331 3UVAVd

4389

$Tvaa

e i< sakigiiand ORI . o o

e A TR s ki DU A . RN £ 5 Bt ol .- RN 2% B3 i Y il e -5
9 9vd €-1d01 238 $IWVaa al 6L-AON-4L2 aivo 2 INssl
[~
(]
-t
OSDOd J8JO0M M. B
eboJeny V.
apoo 10A0) JUGD
483904042 | (1°'8)SND 43 =1))®00 BA}D8T0E~
t jusueod
-WO0D J40) POX V1IN
(1°ciIsna i3 7q 03 1pO06 JiwiY
D owdg CL‘'PISNDAI 40ddn SA SIS 188 -
ONINVIH INTIVA/SLINN S3ANTVA DINOHINN ANVYN ¥3L3HVEVL | JUD

s$Ivaa

39vd €-1401 D238 S$via al 6L-NON~-LZ aiva 2 28,
(2 anoJ48 1-14d01)
JFusuUOdWOD peJdInD
-84 4O JB}jI3uep]
(2 dnoug ¥-1d0I1)
FUsuOdwed 83DPp FTYY)
- 1PUDD B YO30W ISNY e4873904DYD gt (6)dVHd3I «13USP] JUOUSAWOD-
.3 {(€)dVHd3I
31 Ja®1pi1uspy
N201qQ LIOP SJIDMYOS
QU 188D q Yopw yeny tJ8JIODJIOYS gy
JL.=
(2)dVHdI 31 481312
=USPL ASDY) SIDMYjOS 401 5 13uep
ey |1880q Ys30W IsNY S4830D4DYO 9 (€)dVMNd I ¥001q BJYOP JO NED) -
FELRY] e 8014 jvewusSisey
LA 'y (2)dvHd3 O3PpP 40 NED4L-
uoiy
«P30171P POYIIQIYyOSd d
UoI3IB3071ID 1DIIIN] 1
Yo §13P2071P peX]) 4 3
epod J833PJDYD (1)dVUd3D UO 1321473804 8dA) -
(X)dVHd3 doy voiy313404¢"
ANIPIFISUOD YODPSe JOy
SAINIVIALSESNOD LN
“NOISSY ANINOILILAVY 4
SNINVIH INTVA/SLINN SINIVA JINOUWINYU FUNVYN BILIANVEVL | J¥D

S$vaga

-
N
o—

6Z-AON-L2 3iva NEs1]
* pe11ddp ®q 09y *UO 10U IN
JOQUWNU OSPI ITJIOM M : «dO308P JUSID) j 90D
pei11ddo eq , Ul pesn 34183 *9
03 sJequnuy eBpJeny v 03 19ne] 83NQqLd
SOPOD 4833D4BYD dd183 -390 pPOC) ©J4DMY OG-

suo|j3oej 88
qJene JuUSI0|) je0D"

¥d4Nn3
JO)} SD ewns INQI23IY 40}

/OPOD 48O0RIDYD (€ludisS3 18487 USD]))e0])"

122

(2)8d183 XSpU| 8INQIIIIV’

»-1d401
Ul 48y jiI3usp) ueU LYY}
-0dwos yY330W SNy $4039P4PY2 g1 (1)8d183 - 13USP] JUSUOAWOD"

eANQq 4330 JuUsu
«0dWod ARBOTO0UYDSY
214j100ds Splii®n0
ADW 810087 JuS |
(X) ddi$3 1} §90) OA 300108

SiNIID
1443200 3AAILDINAE]

ONINVIN ANTVA/SLINN S$INTIVA D INOH AN AUVN 2213NVEVd | 439
sSWao

T U N R Ty

T e e - e

nsesl

29vd E~-1401 238 8vao al 62-AON=-L2 aivo

suoij3pu
pe|1ddp 8q 03 = WIOIOP JUS DY)
SJOQUWNU BEPO ISJIOM n «4903 Uy pesn
pe1dde 8q eq 03 j18n®) 8Ing
09 sJequnu sBpaeany v = 14998 ABOIOUYDBY
/0POD 48PIPADYD ¥diN3 pe|j)i108dsun d180Q-

SNINVIN AINTVA/SLINN S3NIVA JINOHIANM ANVN AILINVIVY | 42O

S$Iviao

123

R T e S e L,

9vd v-4401 D2as S$Ivag al 6L~-AON=-L2 ailva | ¢ anssi
safhy AJ0B83DO
uodn pespq 2 dnous
S-1d4d0] ®sspq PIYOP
ABOoIOUYySeY U] B83n IR I IFSELUTT X
~8p 03 YO3IBW SNy s4830P4DYD g1 ass3d sginep 04410084ag"°
2 ano4s g-)401 ®e0q
PIPpP RBOIOUYDIBY
Yy Uy peuljep
D sS8po3 MJi0BO3DO
ABojouy D8} BYY Ul aspood
ARLque uUDP YoybWw IENK 493304040 2 14999 sdAqy ABOJOuUyDeL”
483)ijuepg
FINSUOCAWOD 80P | PUD) 84093004042 §T o] %o To) 4O j13uep]
estnep
FUsUOdWOD YIPe 40,4
NOILINT 420
A31A30 2iVAIGNYD 4
Paul jep
e4N3003 14240
®3IDPIPUDD Ajijuepl
puD j18qD) 03 pesn
4P Yo IyMm T48300
~4DYD G2 0 WNWiXDY SJ4830D4DYO al1sd 401) IFUSP L SISP IPUSD
NOIAINL 423G NOIL
“VINOI .iN0D 3AVAIaNVD 4
SNINVIN ANTVA/SLINN SANIVA DINOHINM WMVR 3L NVEVL | 42
SIvao

124

2 J0vd4 »-1401 D38 8$Wvao as 6L~AON-LZ aiva T anssi

(4]
[
o~

2 9noJld g~-1401 ®spPq
B3IBP RBOJOYUDEZ UYL
SN0 1340 48}) I3ueP
/70dA} 83D tJdOLdAD
Y3 IMm SIPISILIIO0D PUD
FueUOdWoD D |Io0dS
vyoan Jjuepusdasp 84 Fuousdwen 490)
sSuo | 3do pas|jdang (2)d40222 ¥ vei1q3de pegyoejeg”

ONINVIU INTVA/SLINN SANTVA DINOHANK AUVN B3P VEVe | du8

sIVva0

A0vd S-1d01 $Ivaa at 6L-AON-LZ aivao T anssl
seaya 40430 °"Hi0BOIPD 11D
=3I IMme JOJ4PIUOD 40 42909 B ®| X0Q ¥°91q
-0J48do/J4030NLPS U o1 (ENT)IOVL pejaqe) g1 ARJo888)
Ivewd | nbe _B_ = a9 (6)1I231 ‘e903J0Ul j1000%044d
as0q Uo{§jows -1 (8)1501 PUP °‘BuiyD0Iq ‘883D4
Apjdeipa 40 (431201 d838uDJy O/1 OALY
sdRjeY03/p4DOghaYys an (9)1201 -~00d8Rd WAWIUIW B 6D
seysy ime esinbes Ajuo pus /1
/91043U03 J1dNOOOs 293 (6)1901 PUIESE204d 405 UO LY}
sIeuDd uo | 3Dy ~BUIFISOP JO COOINOS
~UBWNJIISU| JldAdND0Ds 49 (¥P)IIoL AUSSOJIANL SI0YYO By}
AJowewy WU (E)IDODL *BuIuS I I40d SIPM
(9yPp/e2 104 =3)08 40) peIINDE4
SU1] UO|IPOIUNWNOD b b} (2)19014 sPpeJ4D AJPwmi4d Byy)
IIUN JoeseD04ds Nd (1)1321 04D 884y} ISS) Sy,

1sepniIsv) opoo

ITIY SA DG 403004040 2 (131321 J4o1313uepl ARseBeVym)°
NIL oY I8
AJ0BOADO OBSe J0 4
visseBaqug se 4080308
snijtsoy IN31L ANSIING SO JNQUNY
4817 ANOS
-31VI ¥3L6VH SLISI
ASOIONHIIL BILSVH t
331412
SJ830040Y) N2 aiQal -NIGI 3TL4d ADOTI0NNOAL | §
SHINVIN ANTVA/SLINN SAINTIVA DINOHANK ANVN 3313UVEVE | 489

126

e R e A

I0vd 6-1d401 D238 $Ivaa al 64-AON=-L2 aiva | ¢ Nss1I
f 120be j0u INDL ©%
I 483 (F)T108 epod Isl YO)IDNIISUS 40}
1PNnbe 00U ())VIDL Je33D4PYd Y C1)1102 A1) uweIONIISUL "
Jogeyu SUS | IONJLJISU
enijicod INDOL NIDWYDUSQ O JO0Qunhy
1811
NOILONILISNI A31SWVM
¢t AseBe3ypo C1)ONDL ©% Il
uean)8 J40) s SJ0 | I3UEP; BB IAGP
Sy} NINIIM andiun 30 (1 RioBe30d
*°qQ Jsnw Aajue Yoo 3 SS830040Yy2 g1 (r°1)1094 40j) 3811 e3ineQ°
ospq 0P ABo0u
Y38y u) Ajuesand ~
46883u1 ' faoBe3no jo o
oniyoBau uoy {1)ANDL SO2 NP 0 J0QUEUN)N°
! ANOS3ILVD 304
1817 IDIAIQ VILSVH
‘pe3901109
eq 0% SpOesu OIDP
0 J0n0) PUD SO1J
~0B883DD FDYM 03 €O
xoq woLIG:= e (131221 pesiapisuocd oq shwm
JOPOOd PIDDS a$d (€1)1901 ANBUUOS | AUS VO LY 3
48qUidgds 3d (2131921 «-DNIOoNAS uBSisep 48
[FT 1 1] «aN21340d OY)L “POPPO
Tepoy/DIEDR) Als uo (11)1991 2q UBY S8 1406807300
SNINVIH INTVA/SLINN SINTWVA JINOHINK AUVYN B3230VEVd | 480
SWag

T i

39vd &-1401 D238 81vao ot 6L~AON-L2 aiva T anssl
yojpdoe
40 AJDJIOAWEY des (€)74621
weqyshe 8.8 (#3174€014
19809 M I (€)74@01
SUO I IONJIITUY) i (2371624 JopJi® oiJomny
Qo8 «9O.s (31374601 -BYdI® ui L@NDL
spos oy sl J40) shey
FY XY 1 FT I'E I [R IYY)} edAQY AOOIQ S S LY°
GsJoBB3U Y
sayy180d 1GND1 sedh) jO sequny’
SidAL AD0I8 FILEBVH
o/1 18 1juenbes .038.8 (£171aQd4
1813
-uenbes Ajuo pOeJ .sou.” (9170801
wopundy Ajue poed .A0d .8 (§)706D1
O/1 wopupd ‘NVY .= (¥)70821
NOBYIE 0410, n (€)0&d1r
enenb .041d.s (2110801 Jepae 0|JouwNy
40))nq JDINDJ LD «4N@J.s (1)7Q021 -0yd1I® Ui aaNdl
sapoo . o3 st 40; shey
JOY0DIDYS P (1)710€01 suijdiosIp jo 81"
PITII Y IV N L LR
®eniy 00 aaNdL A0S IP }O JOQUNN"
SANIT
-dI361A NI0NE VILSVU
SGNINVIKH ANTVA/S8LINN SINIVA OINOHIANM AUVN ¥212UVEVE | JUS

$Ivaa

Ay . W - T ST ST F Nais I P R - A o 5 .
—— ohadedie . Tk o et sl ot T M 30 earvadidt? Tl el e o Vi W s N wd_itr * s i g e

- 33
v 39vd 8-1d01 238 S1vaa al 6L~-ANON-L2 a4Va T 3INSSI
3
!
|
syens) ;
YO I PNOBXNS RSOy “
AU 1P O Jequny T "39° Jese3ug (1°d)US0dL s1ene- |
BUIASDYIIINY " “
t
!
seanype 4
we3shg BujibsedQ :
d A0S$3003d HOVI 304
S3LNAIVLAY NOSSID0NJ €
[~
o~
[]

40pa0 IPD) JOWNY
-pyd1e Ui INDL
03 l1s} 405 she)y

s48300404y2 g1 €1) 1101 esoNBuULY jo IS
Jesejug
on13 1904 aNdL seSPNBun) 30 JequNN"
J SIAOVNANYT DIN0E
ANINAOTIIAIA 32LASVH
ONINVIH JNTVA/SLINND SANIVA DINOHANK INVYN 43L2UVIVL | 430
87vaa

TIH ricrom,
.
G e b

o AR DR i ataica 2iwibivinicibissignimbiinill
-

—_—— bl il
Advd §-1401 238 $Iviaa at 64-030-82 34vVO0 |
juomeIqoue
SPUOCDBS OUBN ©) penpIs J40d uew
83PJ4ND2p Spucaeg g "39° 6°8N13 (8°'d)U804dL -08DUDM BSOJNOTOY-
foauend
-84) JUSWSIqQBUS
PUOCIBES/EJUBWEIQDU] Jo8e3u] (42°9)US0dL POADIE WNW| XD~
FYeweJqoue
SpUCDeS OUDN P30p J0d Juew
03 ®3D04ND0D SpuUCdeg g ‘39 é6°'@14 (9°9)1US0dL -08DPUDPW ODJINOCTOY-
fouend
-04) JIUSWBEIQOUS
puOCOSS/Ej3UBWME QDU Je80qu} (6°'9)NS0dL DIDP WNW | XD~
juewejqoue
sSpuocoes OouBDyN o3 ow iy J0d Juew
830J4N303D SPUCIeE g ‘39 6°'814 (p°d)USOdL =06DUDW 8DINOSeY-
fouend
=843 jJuSWEIqQDUS
puedeS/EueWeIqDU] Je8ejug (E°9)NS0dA SW]L WNW XDy~
sjuewes1QPuUyl
SuUoI1ysp) J4PIN2JIID (31°d)usodl - a"
D Ui @3j1n4es 8qQ 03
POWNSED 84D S0 g "ag’
(2°9)NS0dL~(T°9) SIBAST) O3 1A4L0E
HS0dl BuiuiIPwWes By, JeBequg (2°d9)US0d4 AP 140040 3O JOQUNN-
SNINVIN INTVA/SLINN SINTIVA JINOUWINM ANVN AL INVEVE | 439

SWwao

P A o

L R s

e Al et 34 ittt
9vd S~1d401 23S 8vaa at 6£-0320~-82 341vQ T NBSL
POAIOAU| SO jJ0omeN
(4 °9)udsdL #PpOO 0 J0qQUNY-
sSjIUsWeINSsDON BULITIS”
T IEY LYEY ')
NIPWYOIUSQ YODO JO)
SIUSWSINSPOW 88 UO LY
I L FEY DR YRY AL L JY
SO |J0MOW JOSn
031q130dwod 0 817 °
SpUOCDSS OUDBN (ge°1°4d) JuemeSousw
09 93IPINIID SPUODSS 8°39° 6°'8t14d #¥10d1 oD4NOEBI 10N °
INO P8I) V) P8I Y sd.s
4D1N03 1D .=
Ajy1d0i4d 'dem
(2°'1°49) 7 1000 J40) SWMEYDS
spo) €70d1 90 1AJ0E NED} -
(g1°1°4d) 1 1eA8) SNEDY
1 *"39° JeBejupl 17042 0 JBQUNU WNE{| XBY-
(2°9)US0dL ©°% 1)
18A0] RSO} OB J04°
NSHBY J048 PuUBSesS
SpUODOeS OUDN 404 PROOYJISAO JuGW
073 83DINOOD spuUODSS 5 ‘39 'S4 (6°'9)KS0dA N YYIT Y FLLY Y I
SNINVIHN ANTIVA/S1INN SINTVA JINOMNANM INVN W1LIUNVAVL | 449

ewaa

131

L asanT AT ke B

N RS Rl T3 " . -
ovd 6-1401 23S $1vaa al 64£-9NV-¥1 aiva t nNes1I
o9 | JOMMN
(n°1°a) 110 403 10303}
s®ej2h) g8 *319° J488aqu] 14dd IOUD | IPINAWOD) -
(%°'2
‘w'y‘a) 3 IDM 8403 DIDP
g 39" JeBaju]} Wwidi Yo1D4d8 O JeqQUNN-~
(n‘s S3IDM Yyoye) LIPP
‘wy‘a) Yyo3PJI08 O UO (1D}
8 39 Je8e3ju] Hidli «ONJIITUN }O JOQUNN-
[X7 1] 2°Is)y PUD W AJowswm
A0J40m SO 10w 2 opoD Yooe J40)
o8D40AD SO 1AW T3) spuUsweINSDe) Bujw)”
(p AnOJY seE)
w ARiJowew 8quisep
o9y peENn S}jiun (C'w*°a) w Asowew
S18Dq O JOqQUNNy 1°39° JeBaju] 1HSdl 4yl 8pPOd O YYBUS Y-
(JO880304d SIyY
403 pouyjepesd 84D
se |J0mew JOyyo Aup
¥ dnouy e=@POs ATODY JOSN B4
Ul peutsjep sedhy s ARJomawm 8JI 1 OYY)
AJouow Je3eDW epoo (w*y°d) w AJowew OPOD YOO
Yyaim eeJ4bp Ny 403004DYS ¢ 1Uusdl 40) 0dAYy RJowew Oyj
ANINVIH INTVA/SLINN SINTVA O INOHANM ANVN 83132NVEVd | 480

132

e I

8 39vd §-1401 23S $Ivaa as 6£4-030-82 aivo T angs!

AJowew 1D IjuSNDeg HE.s

AJowew SS830D

wopuDbd Butyvloy WYY .=
AJdowew
UIDW SSE00D WOPpUDYy HUVE .
ARJowew Ajuo pDeYy +HON .=
84030D04DYD ¢ (w)daug eah,

W 3IDIA3Q ANOHIM
304 S3LNATALLVY ABOHIM]

18Py S1SAIDUD

U0 3IDPI IUNWWOD ”
4088032044 01013 10Y $3iNG1Y¥11LY —
Uy peuysjep 8q o) ANIT NOIAVIINNKUOD 4

®dRYy ®i14y3y jo

(1°2°t1°9) YO IFONJIJISUL UO | DD

sJanoyupy Je8eju] o20dA -11ddD 480 SeSUDYD-
(1°1°1°4) o8JDYs uew

sJanoguUBY Je80qu1 3044 -dojensp Wiy} SUQ-
s

eBonBup] J038DW 8Yy
jJo 7 eBpnBuny Buish
SIVUSWS INSDOW FuUSWAO]
. ~SAGPp U0 300 jdayY"

ANINVIHN ANTVA/SLINN SANIVA JINOKHINNK AUVN 3ILINVIEVL | 42D

€vaa

Riboinsset” B . e e

P

a0vd 6§-1d01 23§ 8$vaa al 6£-030-82 31vO I
®1qQDESe PP
piomejqnop .QMEQa, =
21qQOss8LIpPO
pJ4om 31Dy +OUMH , =
8J1QDSFOJPpPD piOM +QUOM ., =
S1GDSS8IPPD
®3Rq 219 IyBie .G60.3
81qPSs84PPD
e3hq 319 x & .969.s
®1qQDESSJIPPDd 1 Q ;11Q.s
spod (1°n’‘w)
4893904043 ¢ dNVviL 18ney”
NVNKHL ©% Tsn 31un
®JQDESOPPP YIPe 403
JeBajuy
319 eniyisod (C'W)ZSHL sjueweadul
JeB88q4)|
319 snij1%0d (2°'W)ZSHL xou -
J08873uy
€319 eniyisod (1°W)ZSHL vig®
$31Q ui ezxig
JoBej3ug EJIUN 9IQRESESOIPPD
entyisogd NVNUL AL} 1P SO sequny
o408
1043U0D 8 V1qQOY tIM SOM. =
ANINVIH INTVA/SLINN S$3IANIVA JDINOCUKIANN INVN BILINVAVL | 489

$7vaa

134

.

. ¥ S

wy
[P

REAT. S T e
SN A

AR . ek s

agx 3avd £-1d01I 23§ $Iv3ida al 5£-230-12 aiva I ansst
uo1l3838p
40440 31Q ®1gnop
[T AR FPY-T)
40448 31Q @ \BuUS .030Q038.=
319 Ajyi40d +ALI¥VYd. s
spod (6°D'w) Yo §3004400
4839D4BYd § dNVYHL PATIRY I LY VT FPFE
680000 S} (4Mm
JeoB8ejug (8°'N°w) ojBuls J40) Ssun
18A87 JIUN ED ewDeE enj3 1804 JdNVHL IDIFUSNADeS xDY "
spuodes.ounuy (2°n°w) 2M1un
©3 ®3P4N330 spuadeg 10ea dNvKi s70W1 38 19A0 B 1J4M°
SPpUOISE . CUDY (9°n°'w)
03 83PIND2ID SPUOISS Ineq dNVKL SWIY) SO20D SIIJA°
poeds @1Buis 4o
JeBejuy (§°n*w) POISOFSUDIY} SR IUN
18A8] J1UN D eWDS ®ajytsod dNVidL 1B 3uUSNDeS WNW) XD)S "
9]
spucoss.oupuy (pn‘w) F0un
0} ®3PJ4NO2D SPUOCDSS j004 dNVHL J0d oW 3O IOAD pPOeY”
spuodss.oupu * (E'n'w)
03 @3DJ4NJOD SPUCISS 1004 dNVKL Wiy SSEZOD PROY"°
$31Q UO 13984400
uo 3 18p JOoJsue JO 48803u | (2°'n‘w)
A314P0d O ®A|ISNIOXE oni1jyived JNVHL 18007 JlUns/EN1I@°
OSNINVIH ANTVA/SLINN S$IANWVA DINOUWINM VN 83L3UVEVL | 489
S$vaa

135

P A R R s it i dmsisd

S T T R i

it 9vd S-1401 81vaa az 64-0NV-9 aAvOo t anest
S31NAL81LY AVIdSLO [
831NA1¥1AY
A4AL 331 /708V0GA N []
SANDLIAS
/78 T0UANOD L1420000 £
S3ANAIVLAY TINVY NOLIL
“VANIHNULSNT 1142300 9
ssupue
EEY R O TYREY YT LY FT | (g°®'w)
40) Wiy UbGW-TJINOY 1004 d8HdL IO
soupue
=3uiIDW eAa|34D3ueARId (p°e°m)
peInpeysses-sanoy 1004 d8ida udsH "
4 10d04 (C's‘w)
03 W) uUbDOW.BJNOY 1D84 dSHdL FISU N
seJ4n11D) uesemyzeq (2°s°'w)
W) UPSW.EJNOY 1004 d8udl) F U
(1°e°w)
401)13UEP) SNDIUN e4030D4DY4Y% I d8NdL 401 3 13uepg
JoB03U | 401749dne YOO J4O)
enig1c0d (WMISHULY ed01144dNnEg O JoqQuUnYy
ONINVIN INTIVA/SLINN SANIVA JINOMaANK IUVYN BILNVEVL | 439

Svao

R

136

Mmam‘.(x.\w. e

RE R A B s

P RS

21 aovd 8-1401 238 sIvaa ax L-WV-9 aive I angss
S31nA1311Y
X0OWNIVIE J1¥aN2D| Ot
s834n9
~I¥44V ¥30V3E GuV3| &1
SAANGIALLY FaLNINd 1 4 |
S3ineialiv
GEAVOS TIC0U/VEIVI AL €t
S31n0
~1311V H31IAB/I08LN0D
301V3340/730L00n818N1T a2t
saina
~J314V ANDUNLIND3I .B. 1A
saine
~JIBL4Y 38VE MOLLOM]| =7
SNINVIH 2NTIVA/SLINN SINTIVA JINOHINKN VN 3312UVavd | 48D
SIvaa

137

ST SEARA s S5 e Tt 5 W s ety

" : ¥,
T

APPENDIX B.

REPORT FORMATS
138

w

&

g .
("4

o

T &
S NOILVOIJIINIGI NNY GUVONVLS °T LVW¥O04 -
o

L

(Ve

= JHVML 40S ADOTONHI3L WILSAS
.n.p.. 39¥d SSvd 31VAIONYD NOILVNTVAI SS:WW:HH AA/0Q/MWM

i
O S e S Ry P PPN h

H R R SUF S R

AYYWANS LN3NOJWOD JYYMOWH °Z LYW¥04

6666 = SININOIWOD 30 YIGWNN TVLIOL »wx

XXX XXXXXXXXXX XXXXXXXXXX XX
XXX XXXXXXXXXX XXXXXXXXXX XX
XXX XXXXXXXXXX XXXXXXXXXX XX
a3y1nb3y a 3I1A30/A¥0931V)

AYYWWNS LNINOJWOD IYYMAYYH

R S

R fuvﬂ.w{A)ﬁ alh Lo

TRk

&
i
i
AYYWWNS 00719 VIV °€ LYWi0d
- 3
666 666 XXXXXX 6666 6666 6666 66 6 666666 XX-XXXX XX-X XXXXXXXXXX 666 “ .
666 666 XXXXXX 6666 6666 6666 66 [666666 XX=XXXX XX~X XXAXXXAXXXX 666 . ..
&
AININD3IYA J348 J1Sv8 XM NIW v QYoM 3148 SQUoI3N w3~ W4~ ¥3I1ILINIAT N0 ﬁw,
ANINOIWOD TYNYILXI QYOI Y- H3d~-SAIOM 53148 /S118 WMMIXVW INIWIISIO TIAN
NOILYNILSIO/30¥N0S TYNYILXI ONV AUVWWNS N2078 viva

SRR AP S0 540 e S (s 5 e e e e e AR

6666

6666

£
03y

6666

6666

4
0334

k

AYVWHNS NSYL v 1viWyod

6666 XXXX
6666 XXxX
1 INITIOSIO

03¥d LINIW3T8YN3

XXXANXAXXX XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXX

XXXAXAXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX

XXXXXXXXXX
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXX

$H2078 $NJ078 39VNONYI YITJILIN3CI
INdIN0 LNdNI

AUVINNS NSYL

142

S Bt N

AYYWWNS QY07 3NIT3SVE °S LVWHOS

66+366666666°6 66+366666666°6 6666666666 6666666666 6666666666 6666666666 XXXXXX
66+366666666°6 66+366666666°6 6666666666 6666666666 6666666666 6666666666 XXXXXX
66+366666666°6 66+366666666° 6 6666666666 6666666666 6666666666 6666666666 XXXXXX

WOWIXVW VYAV WAWINIK 39V¥3IAV WAWIXVW JOVY3AV al
SONOJISITINW GN0J3S/S.IN3W319VN3 GNOJ3S/SINIW3T18YN3 asvl
NOILNDI3X3 ¥3d LIWIT 3WIL 31vd 0378VN3 Viva 11vy G3AVIS/3MIL

6666666666 IWVY4IWIL TVi0L ONINOILILY¥Vd
XXXXXXXXXXXXXXXXXXXX QYO 3NIT3Sve

A¥YWWNS GV01 3NIT3SVE

P T R e R

SINIVYLSNOD LNIWNDISSY NOILVNIVA3 9 1vW¥0i

ASVL WILINI
Viva| «» 0311891H0Yd
Q3XId)«
XXXXXXXXXX XXXXXXXXXX NO XXXXXXXXXX XXXX XXXXXXXXXX -
-
XXXXXXXXXX XXXXXXXXXX NO XXXXXXXXXX XXXX XXXXXXXXXX -
XXXXXXXXXX XXXXXXXXXX NO XXXXXXXXXX XXXX XXXXXXXXXX
318vI1ddY d31411N301 Y3141LINIAT «+Q3INIISSY »3dAL
N3HM AIN3INOdKWOD AN3NOJWO0) LN3INOdWOD AIN3WNIISSY

INVA NOILVINOIINOD NOILVIIddY
SINIVYLSNOD LINIWNDISSY NOILVNIVA3

e Mo L A e P P Sl e B e T R o N T Sl S S A a7 L

LAY LT

S3ILIY¥0IY¥d NOILVNTWAI °/ 1VW¥Od

666°66 66° 66666 XXXXXXXXXX
666°66 66°66666 XXXXXXXXXX
666°66 66°66666 XXXXXXXKXX
6666 66666 XXXXXXXXXX
666°66 66°66666 XXXXXXXXXX 2 66°66666 XXXXXXXXXXXXXXKXXXXX
6666 666°66 XXXXXXXXXX
666°66 66°66666 XXXXXXXXXX 2 66°66666 XXXXXXXXXXXXXXXXXXXX
6666 666°66 XXXXXKXXXX
666°66 66° 66666 XXXXXXXXXX 2 66°66666 XXXXXXXXXXXXXKXXXXXX
WLl X sLn
1N3D¥3d) ININOWO) % 13A31 DWEW0L /u3141IN3QL ALINOIYd
3MV¥3 104 IN319144309 /09
..... ==e=-==-SININOAWOD ALIBOIYd=--=-======= - SILLINOINA YOOV

SIILIY0IYd NOTLVNIVAI

TS C P S D S B e N R FUR OV

[

A AR 0t LR e

3Z18 ..zu._mom..“_ ONINOILILYVd JISVE 8 LvWd0d
03133735 S3ILIYOIYd 6
SITYOWIW 66 SHJ018 Viva 666
S¥0SS3J04d 66 SHSVL 666
3ZIS W3180dd ININOILILY¥VY JISvE

w onnn Mok SRR oot LT Ny L er SRS o, A Tl Al L S AT, Bl B A S

146

PRy

" R WX

=

AYVIWWNS V0D ALIYOI¥d °TOT LvWyod

W
L 41 66°6666 666°66 66766666 XXXXXXXXXX
oz
W i1 6676666 66666 66°66666 XXXXXXXXXX
= 41 66°6666 666766 66766666 XXXXXXXXXX
[}
Ju Y] 666°66 XXXXXXXXXX -
(73] 3 66°6666 66666 66766666 XXXXXXXXXX 6666666 66°66666 XXXXXXKXXXXXXKXXXKXK 6 o
~ S
S 43 66°6666 666°66 66766666 XXXXKXXXXK -
o .
— 44 666°66 XXXXXXXXXX
5 4] 66°6666 666°66 6666666 XXXXXXXXXX 66°66666 66°66666 XXXXXXXXKXXXXXXXXXXX 6
m 41 66°6666 666°66 66766666 XXXXXXXXXX
44 66°6666 666766 66766666 XXXXXXXXXX
o~
. 13 666°66 XXXXXXXXXX
[~ 4 66°6666 66666 66766666 XXXXXXXXXX 66°66666 66°66666 XXXXXUXXXKXKXKXKXXX 6
W4 A3 INID¥Id W03 LNINOWD) WI/AN SLIND AT
INWAIIHY 30NVET 0L /INBGASIHN 3WVHI0L /W3141INIGI ALINOINd
INIYIND 1NIUNND /1909
L E T Tl TR L UL LTI s —
AWWNOS V0D ALT¥OINd
i
R
i -

i et] i N Al ;S

NOILYI0T1TV dSVL °20T lvWyod

666666°6 666666°6 XXXXXXXXXX XXXXXX

666666°6 6666666 XXXXXXXXXX XXXXXX 44 66666°6 666/666 XXXXXXXXXX XXXXXX 3
6666666 6666666 XXXXXXXXXX AXXXXX

148

666666°6 666666°6 XXXXXXXXXX XXXXXX

666666°6 6666666 XXXXXXXXXX XXXXXX 44 66666°6 666/666 XXXXXXXXXX

666666°6 666666°6 XXXXXXXXXX XXXXXX

666666°6 666666°6 XXXXXXXXXX XXXXXX

666666°6 666666°6 XXXXXXXXXX XXXXXX 34 66666°6 666/666 XXXXXXXXXX XXXXXX

ININD LNANI AYOWEW 30078 9v1d 3NIL SNOILAJIX3 ¥OSSIN0Md VL
Rl 14§ TR St et 101

NOILVI01V SVl

34
34
34
34
44

wvd

6666666
6666666
6666666
6666666
6666666

viol

666666
666666
666666
666666
666666

S3HIL3d

SR T IR I

NOILvI0TTv %3078 viv@ °€0T LlvWd0od

666666
666666
666666
666666
666666

S3Y0LS

XXXXXXXXXX 66°66
XXXXXXXXXX 66°66
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX 66°66

405SS3303d IN3J¥3d

NOILYJI071v %3078 viva

666666
666666

666666

HION3T

ol g

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX

AYOW3W

o
«
-

XXXXXX

XXXXXX

1078

g e R i e e N e

NOILVI0TTY ¥0SS320¥d “v0T LvWu0d

34 66°66 66666 66°66 6666°6 66°66 6666°66 66666
EE) 66°66 6666°6 66°66 6666°6 66°66 6666°6 666
44 66°66 6666'6 66°66 6666°6 66°66 66666 666
44 66°66 66666 66°66 6666°6 66°66 6666°6 666

IN3J¥3d 311 IN3J¥3d 3WIL IN3J¥3d 3IMWIL
w4 1WOW 3JUN0S3Y 1Nd1N0/LNdNI TYNOILViNdWOD SNOILNJ3X3

=-=--=-=--e=sco= NOLLYZITILN YOSS3J0Y -==--=-=--=--=---=--

NOILYI0TTv ¥0SS3J0¥d

#x V101w
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

ASvl

XXXXXXXXXX

J0SS3203d

150

Pl

i3

- Hep

e TE

S e N g i e

e '?V‘*:{:‘“W?#'“ W P s

SR R
s T

S vt e D B P e

33
44
34

44
34
44

w4

ST NEEE

66666666
6666666
6666666

6666666

6666666

6666666
ioL

6666666
666666
666666

666666

666666

666666
S3HIL3d

o AR SN, s

NOILYJ07IV AYOW3W

6666666
666666
666666

666666

666666

666666
$3¥01S

J0¥d 10l#»
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
40553304

*GOT 1vWdod

66°66

66°66
66°66
IN3J¥3d

NOILYI0TIV AUOW3W

R L e

666666

666666
666666
HLONI

A+ WD

II10L«x

XXXXXXXXXX
XXXXXXXXXX
%078

XXXXXXXXXX
AYOW3W

151

